# **OCOTILLO EXPRESS WIND FACILITY**

# PLAN OF DEVELOPMENT

Draft

Prepared by:

Ocotillo Express LLC One Letterman Drive, Building D San Francisco, California 94129

September 2009

# TABLE OF CONTENTS

| 1.0 | PROJ    | ECT DESCRIPTION                                                                    | 1  |
|-----|---------|------------------------------------------------------------------------------------|----|
| 1.1 | Inte    | RODUCTION                                                                          | 1  |
| 1   | .1.1    | Type of facility and generation capacity (Federal and non-Federal lands)           |    |
| 1   | .1.2    | Proposed schedule for project (including anticipated timelines for permitting,     |    |
| С   | onstruc | tion and operation, and any phased development as appropriate)                     | 1  |
| 1.2 | Pro     | PONENT'S OBJECTIVE AND JUSTIFICATION FOR THE PROJECT                               | 1  |
| 1.3 | GEN     | IERAL FACILITY DESCRIPTION, DESIGN, AND OPERATION                                  | 4  |
| 1   | .3.1    | Project location, land ownership, and jurisdiction                                 |    |
|     | .3.2    | Legal land description of facility (Federal and non-Federal lands)                 | 4  |
| 1   | .3.3    | Total acreage and general dimensions of all facilities and components              |    |
|     | .3.4    | Number and size of wind turbines (Federal and non-Federal lands)                   |    |
|     | .3.5    | Wind turbine configuration and layout (Federal and non-Federal lands)              |    |
|     | .3.6    | Substations, transmission lines, access roads, buildings, parking areas            |    |
|     | .3.7    | Ancillary facilities (administrative and maintenance facilities and storage sites, |    |
|     | .3.8    | Temporary construction workspace, yards, and staging areas                         |    |
|     | .3.9    | Water usage, amounts, sources (during construction and operations)                 |    |
|     | .3.10   | Erosion control and stormwater drainage                                            |    |
|     | .3.11   | Vegetation treatment, weed management, and any proposed use of herbicides          |    |
|     | .3.12   | Waste and hazardous materials management                                           |    |
|     | .3.13   | Fire protection                                                                    |    |
|     | .3.14   | Site security and fencing proposed (during construction and operations)            |    |
|     | .3.15   | Electrical components, new equipment and existing system upgrades                  |    |
|     | .3.16   | Interconnection to electrical grid                                                 |    |
|     | .3.17   | Spill prevention and containment for construction and operation of facility        |    |
|     | .3.18   | Health and safety program                                                          |    |
| 1.4 |         | IER FEDERAL, STATE AND LOCAL AGENCY PERMIT REQUIREMENTS                            |    |
|     | .4.1    | Required permits (entire project area on both Federal and non-Federal lands).      |    |
|     | .4.2    | Status of permits                                                                  |    |
| 1.5 | FINA    | ANCIAL AND TECHNICAL CAPABILITY OF APPLICANT                                       | 14 |
| 2.0 | CONS    | STRUCTION OF FACILITIES                                                            | 15 |
| 2.1 | WIN     | ID TURBINE DESIGN, LAYOUT, INSTALLATION, AND CONSTRUCTION PROCESSES                |    |
| INC | LUDING  | TIMETABLE AND SEQUENCE OF CONSTRUCTION                                             | 15 |
| 2.2 |         | TECHNICAL STUDIES THAT MAY BE PLANNED                                              |    |
| 2.3 | Рна     | SED PROJECTS, DESCRIBE APPROACH TO CONSTRUCTION AND OPERATIONS                     | 17 |
| 2.4 | Acc     | CESS AND TRANSPORTATION SYSTEM, COMPONENT DELIVERY, WORKER ACCESS                  | 18 |
| 2.5 |         | STRUCTION WORK FORCE NUMBERS, VEHICLES, EQUIPMENT, TIMEFRAMES                      |    |
|     | •       | acilities (including vehicles and number of tons and loads)                        |    |
|     |         | Facilities (including vehicles and number of tons and loads)                       |    |
|     |         | nes                                                                                |    |
| 2.6 |         | E PREPARATION, SURVEYING, AND STAKING                                              |    |
| 2.7 |         | E PREPARATION, VEGETATION REMOVAL, AND TREATMENT                                   |    |
| 2.8 | Site    | E CLEARING, GRADING, AND EXCAVATION                                                | 20 |

| 2.9 G                   | RAVEL, AGGREGATE, CONCRETE NEEDS AND SOURCES                             | 20    |
|-------------------------|--------------------------------------------------------------------------|-------|
|                         | VIND TURBINE ASSEMBLY AND CONSTRUCTION                                   |       |
|                         | LECTRICAL CONSTRUCTION ACTIVITIES                                        |       |
|                         | VIATION LIGHTING (WIND TURBINES, TRANSMISSION)                           |       |
| 2.13 S                  | ITE STABILIZATION, PROTECTION, AND RECLAMATION PRACTICES                 | 23    |
| 3.0 RE                  | LATED FACILITIES AND SYSTEMS                                             | 24    |
|                         | 0&M FACILITY                                                             |       |
|                         | RANSMISSION SYSTEM INTERCONNECT                                          |       |
| 3.2.1                   | 5 1 1                                                                    |       |
| 3.2.2                   | 500 kV Substation                                                        |       |
| 3.2.3                   | 5                                                                        |       |
| <i>3.2.4</i>            |                                                                          |       |
| <i>3.2.5</i><br>3.3 N   | <i>General design and construction standards</i>                         |       |
|                         | THE RELATED SYSTEMS                                                      |       |
|                         | Communications system requirements (microwave, fiber optics, hard wire,  | 20    |
|                         | ss) during construction and operation                                    | 26    |
| 4.0 OP                  | ERATIONS AND MAINTENANCE                                                 | 27    |
| 4.1 O                   | PERATION AND FACILITY MAINTENANCE NEEDS                                  | 27    |
|                         | IAINTENANCE ACTIVITIES, INCLUDING ROAD MAINTENANCE                       |       |
|                         | PERATIONS WORKFORCE, EQUIPMENT, AND GROUND TRANSPORTATION                |       |
|                         | VIRONMENTAL CONSIDERATIONS                                               |       |
|                         | ENERAL DESCRIPTION OF SITE CHARACTERISTICS AND POTENTIAL ENVIRONMENTAL   |       |
|                         | EXISTING INFORMATION) ERROR! BOOKMARK NOT DEFIN                          |       |
| 5.1.1                   | Special or sensitive species and habitatsError! Bookmark not defi        |       |
| 5.1.2                   | Special land use designations Error! Bookmark not defi                   |       |
| 5.1.3                   | Cultural and historic resource sites and values Error! Bookmark not defi |       |
| 5.1.4                   | Native American Tribal concernsError! Bookmark not defi                  | ined. |
| 5.1.5                   | Recreation and OHV conflictsError! Bookmark not defi                     | ined. |
| 5.1.6                   | NoiseError! Bookmark not defi                                            |       |
| 5.1.7                   | Paleontological ResourcesError! Bookmark not defi                        |       |
| 5.1.8                   | Visual Resource Management (VRM) designations and Visual Impacts El      | rror! |
|                         | nark not defined.                                                        | . ,   |
| 5.1.9                   | Aviation and/or military conflictsError! Bookmark not defi               |       |
| 5.1.10                  |                                                                          |       |
|                         | DESIGN CRITERIA (MITIGATION MEASURES) PROPOSED BY APPLICANT AND INCLUDED |       |
| PLAN OF<br><i>5.2.1</i> | DEVELOPMENT                                                              |       |
| 5.2.1<br>5.2.2          |                                                                          |       |
| 5.2.2<br>5.2.3          | Resource Conservation Measures                                           |       |
| 6.0 MA                  | PS AND DRAWINGS                                                          |       |
|                         | APS WITH FOOTPRINT OF WIND FACILITY (7.5 MIN TOPOGRAPHIC MAPS OR EQUIVAL |       |
|                         | DE REFERENCES TO PUBLIC LAND SURVEY SYSTEM)                              |       |

| 6.2   | INITIAL DESIGN DRAWINGS OF WIND FACILITY LAYOUT AND INSTALLATION, ELECTRICA | L   |
|-------|-----------------------------------------------------------------------------|-----|
| FACIL | ITIES, AND ANCILLARY FACILITIES                                             | 65  |
| 6.3   | INITIAL SITE GRADING PLAN                                                   |     |
| 6.4   | MAPS WITH TRANSMISSION FACILITIES, SUBSTATIONS, DISTRIBUTION, COMMUNICATION | IS  |
|       | 2                                                                           |     |
| 6.5   | ACCESS AND TRANSPORTATION MAPS                                              | . 2 |
| 6.6   | PRELIMINARY VISUAL RESOURCE EVALUATION AND VISUAL RESOURCE SIMULATIONS      | . 3 |
| REFER | ENCES                                                                       | . 4 |
| APPEN | DIX A LEGAL DESCRIPTION                                                     | . 5 |
| APPEN | DIX B. POTENTIAL IMPACTS BY TURBINE LOCATION                                | 24  |

## LIST OF ACRONYMS

| Area of Critical Environmental Concern      | ACEC   |
|---------------------------------------------|--------|
| Best Management Practices                   | BMP    |
| Balance of Plant                            | BOP    |
| Bureau of Land Management                   | BLM    |
| Construction Operation and Maintenance      | COM    |
| Department of Energy                        | DOE    |
| Energy Information Administration           | EIA    |
| Extensive Recreation Management Area        | ERMA   |
| Federal Aviation Administration             | FAA    |
| Federal Land Policy and Management Act      | FLPMA  |
| High Voltage                                | HV     |
| Key Observation Point                       | KOP    |
| Kilovolt                                    | kV     |
| Large Generator Interconnect Agreement      | LGIA   |
| Miles Per Hour                              | MPH    |
| Megawatt                                    | MW     |
| Meters per second                           | mps    |
| National Environmental Policy Act           | NEPA   |
| National Historic Preservation Act          | NHPA   |
| National Register of Historic Places        | NRHP   |
| Native American Heritage Commission         | NAHC   |
| Ocotillo Express LLC                        | OE LLC |
| Ocotillo Express Wind Project               | OE     |
| Operation and Maintenance                   | O&M    |
| Plan of Development                         | POD    |
| Programmatic Environmental Impact Statement | PEIS   |
| Record of Decision                          | ROD    |
| Recreation Opportunity Spectrum             | ROS    |
| Right-of-Way                                | ROW    |
| Rotations per Minute                        | RPM    |
| Rotor Diameters                             | RD     |
| Special Recreation Management Area          | SRMA   |

| Storm Water Pollution Prevention Plan    | SWPPP |
|------------------------------------------|-------|
| Sunrise Powerlink transmission line      | SPL   |
| Supervisory Control and Data Acquisition | SCADA |
| Turbine Supply Agreement                 | TSA   |
| Visual Resource Inventory                | VRI   |
| Visual Resource Management               | VRM   |
| Wind Turbine Generator                   | WTG   |

## **1.0 PROJECT DESCRIPTION**

## 1.1 INTRODUCTION

### **1.1.1** Type of facility and generation capacity (Federal and non-Federal lands)

Pattern Energy, through Ocotillo Express LLC (OE LLC), proposes to construct, operate, maintain and decomission a 561 megawatt (MW) wind generation facility on approximately 14,980 acres in the Ocotillo Express wind project area (Figure 1.1-1). OE LLC acquired from Greenhunter, another developer, its rights to approximately 5,915 acres of BLM administered lands(CACA-\_\_\_). OE LLC also acquired from its affiliate Wind Development Contract Co. its application for an additional 8,878 acres of adjacent BLM administered lands. OE LLC also has entered into an agreement with the owner of approximately 26 acres of private land near the center of the wind project area for wind monitoring. The three separate parcels are consolidated into a single 561MW wind project in this Plan of Development.

The proposed action consists of the construction, operation, maintenance and decommissioning of wind turbine generators and associated facilities necessary to successfully generate up to 561 MW in Imperial County west of Ocotillo, California. The project will be constructed in two phases: Phase I will comprise 130 2.3MW wind turbine generators with a total nameplate capacity of 299MW, and Phase II will comprise 114 wind turbine generators with a total nameplate capacity of 262.2MW (nameplate capacity is the full rated capacity of a wind turbine generator).

# **1.1.2** Proposed schedule for project (including anticipated timelines for permitting, construction and operation, and any phased development as appropriate)

- Draft EIS TBD
- Record of Decision TBD
- Execute LGIA  $-4^{th}$  quarter 2011
- Execute TSA TBD
- Execute BOP Construction Contract 1<sup>st</sup> quarter 2012
- Commence civil works (roads, underground electrical, foundations)  $-1^{st}$  quarter 2012
- Commence balance of plant electrical/civil works 1st quarter 2012
- Turbine deliveries commence  $-2^{nd}$  quarter 2012
- Turbine commissioning, testing, and commercial operation <sup>4th</sup> quarter 2012
- Decommissioning 2042

## 1.2 PROPONENT'S PURPOSE AND NEED FOR THE PROJECT

Proponent's objective is to construct, operate, maintain and decommission a 561MW wind generation facility that is environmentally and economically feasible. Recent national and regional electrical demand forecasts predict that the growing consumption of electrical energy will continue to increase into the foreseeable future and will require development of new resources to satisfy this demand. The Department of Energy (DOE) Energy Information Administration (EIA) has forecasted a 41 percent growth in electricity sales by 2030, including a projected increase of 39 percent in the residential sector, 63 percent in the commercial sector,

and 17 percent in the industrial sector. This growth will require an increase in generating capacity of 347 gigawatts (347,000MW) nationwide over the next 25 years (EIA 2007).

Executive Order 13212 signed in 2001 states that the production and transmission of energy in a safe and environmentally sound manner is essential to the well-being of the American people. Reports from the Department of Energy postulate that wind power can provide 20% of the nation's electricity by 2030. The Department of Energy report finds that achieving a 20% wind contribution to U.S. electricity supply would:

- Reduce carbon dioxide emissions from electricity generation by 25 percent in 2030.
- Reduce natural gas use by 11%;
- Reduce water consumption associated with electricity generation by 4 trillion gallons by 2030;
- Increase annual revenues to local communities to more than \$1.5 billion by 2030; and
- Support roughly 500,000 jobs in the U.S., with an average of more than 150,000 workers directly employed by the wind industry.

In response to National Energy Policy recommendations on renewable energy and increased interest in wind energy development, the BLM prepared a Programmatic Environmental Impact Statement (PEIS) to analyze the potential impacts of wind energy development on public lands. The PEIS was published in June, 2005 and the Record of Decision (ROD) to implement a comprehensive Wind Energy Development Program was signed in December, 2005. As stated in the PEIS/ROD (BLM 2005), the BLM is responsible for the development of energy resources on BLM-administered lands in an environmentally sound manner in accordance with the requirements of the Federal Land Policy and Management Act of 1976 (FLPMA) (United States Code, Title 43, Section 1701 et seq. [43 USC 1701 et seq.]). BLM Instruction Memorandum No. 2009-043 was issued December 19, 2008 to provide updated guidance on processing of right-of-way applications for wind energy projects on public lands administered by the BLM.

Additionally, the State of California has recognized the need for new and diverse energy resources including renewable energy generation options. In fact, on September 15, 2009, California Governor Arnold Schwarzenegger signed an Executive Order mandating a 33 percent renewable energy target be reached by calendar year 2020.

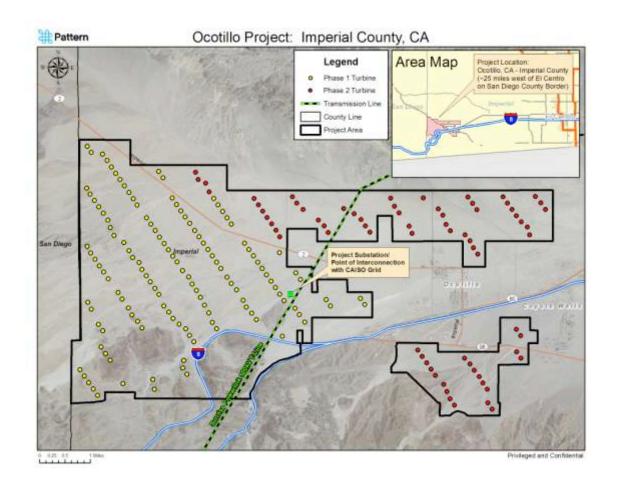



Figure 1.1-1 Project Location Map.

## 1.3 GENERAL FACILITY DESCRIPTION, DESIGN, AND OPERATION

## 1.3.1 Project location, land ownership, and jurisdiction

The proposed wind energy project would be located almost entirely on BLM administered lands in the Imperial Valley, approximately 5 miles west of Ocotillo, Imperial County, California. The Imperial Valley of California has been recognized as an area having high renewable energy development potential. A new high-voltage transmission line designed to foster development of renewable resources, known as the Sunrise Powerlink (SPL), has been approved by the BLM and other regulatory agencies. The SPL crosses the Ocotillo Wind Project site, facilitating interconnection of the project and transmission of its renewable energy output to key load centers in Southern California.

## **1.3.2** Legal land description of facility (BLM-administered and private lands)

A legal description of the entire right-of-way (ROW) is provided in Appendix A.

## 1.3.3 Total acreage and general dimensions of all facilities and components

Facilities for the proposed action would consist of wind turbine generators, an electrical collection system for collecting the power generated by each wind turbine generator (WTG), an electrical substation, access roads, and an operation and maintenance (O&M) building. The project area totals approximately 14,980 acres, of which all but 26 acres occur on BLM-administered lands covered by the requested ROW for the proposed action. The 26 acres of private land is a private parcel which OE LLChas leased for wind monitoring. The total area estimated for use by the wind energy facility (including short term disturbance) is approximately 2000 acres, or approximately 14% of the total ROW. The permanent footprint of the wind energy facility is shown in Figure 6.1-1 and will only occupy 150 acres or slightly more than 1.0% of the total ROW.

| Facility Component                                                 | Temporary Disturbance<br>(Acres) | Permanent Disturbance<br>(Acres) |
|--------------------------------------------------------------------|----------------------------------|----------------------------------|
| Turbine Foundations &<br>Crane Pads                                | 710                              | 75                               |
| Batching Plant &<br>Laydown/Parking Area                           | 10.0                             | 0.0                              |
| Temporary Linear Use<br>Area (inc. roads and<br>collection system) | 1300                             | 0.0                              |
| Access Roads                                                       | 290,000 ft                       | 110                              |
| Collector Lines                                                    | 350,000 ft                       | Tbd                              |
| Meteorological Towers                                              | 0.0                              | 0.1                              |
| Substation/Switchyard &                                            | 0.0                              | 14.0                             |

 Table 2.1-1 Ocotillo Express Wind Facility Components; Maximum Disturbance Summary Table, Based on Construction of 244 Turbines.

| O&M Facility     |                   |     |
|------------------|-------------------|-----|
| Gravel Source(s) | 15.0 (if on site) | 0.0 |
| Total            | tbd               | Tbd |

#### **1.3.4** Number and size of wind turbines (BLM-administered and private lands)

The site layout presented in Figure 6.1-1 shows 244 potential turbine locations. The final layout would ideally utilize the preferred 244 turbine sites, but may include some re-configuration of the potential locations in order to avoid impacts identified during the National Environmental Policy Act (NEPA) process. For additional details, please refer to section 2.10.

#### 1.3.5 Wind turbine configuration and layout (BLM-administered and private lands)

The final site layout will be based on the results of the NEPA process and the type of wind turbine selected, with the total number of turbines generating not more than the 565 MW allowed under the interconnection application. Additionally, the turbine sites selected will be those with the most energy potential (i.e. best wind resource) that do not lead to significant environmental impacts. Appendix B provides an overview of potential environmental impacts for each proposed turbine location [to come]. The final site layout will be in accordance with industry standards, safety measures and appropriate guidance as stated in the BLM's Wind Energy PEIS/ROD.

#### **1.3.6** Substations, transmission lines, access roads, buildings, parking areas

The proposed action would include the following permanent facility components: maximum of 244 WTGs, internal access roads, underground and overhead collector lines, meteorological towers, substation/switchyard, and an operation and maintenance (O&M) facility. During construction, a batch plant, equipment laydown yard, and parking area would also be needed. These are discussed in further detail in section 2.

#### **1.3.7** Ancillary facilities (administrative and maintenance facilities and storage sites)

Ancillary facilities would include an O&M facility, linear temporary use area, and one or more sand and gravel sources used during construction. Gravel and concrete aggregate will come from several locations (Figure X). Each borrow area would be up to 15 acres in size and would be rehabilitated upon completion of the construction phase. Please refer to Table 2.1-1 These locations are anticipated to occur outside the project area, and will be determined before the POD is finalized. Use of sand and gravel from BLM-administered lands would require a permit and contract, which Proponent would obtain prior to utilization of such sand and gravel.

#### **1.3.8** Temporary construction workspace, yards, and staging areas

One 10-acre temporary laydown and parking area will be required to stage and store construction equipment and materials, and for construction staff parking (Figure 6.1-1). During construction, the laydown area may be fenced and gated to control access. Portions of the laydown area may

be graveled depending on the soil conditions. After construction, all temporary disturbances associated with the laydown area will be reclaimed.

The project scope will include a network of 16 foot wide roads that will provide access to each turbine location and to the project's O&M building. During the course of construction, access roads will have an additional temporary disturbance of 20 feet to facilitate the travel of large tracked cranes. These disturbed areas will be graded and compacted for use and then decompacted and stabilized at the conclusion of the project. In addition to the crane travel paths, the underground collection system will also parallel the access road network further widening the disturbed area. A temporary linear use area (TLUA) will be designated to accommodate roads, crane travel paths, and one or more underground circuits. The TLUA will include a 30 foot buffer off the centerline of the road and collection system, plus the area in-between, with a typical total width of 200 feet (Figure 6.1-2). Grading and clearing would only occur within the 36 foot wide road and 20 foot wide collection system alignments (470 acres). The remaining portions of the TLUA would be subject to disturbance by construction equipment and temporary laydown sites. The total approximate area within the TLUA is 1300 acres. Additionally, there will be a 400 foot diameter (2.9 acre) temporary work area for each turbine site that will be used for the crane pad, equipment laydown, and other construction related needs. Within the turbine temporary work area, an area of 75 by 150 feet with a maximum slope of 1% is required to support the crane used during erection and lifting the turbine components into place. The crane pad will not be surfaced with concrete, but will be compacted to provide a stable and safe operation area for the cranes. To meet the necessary compaction standards (determined by geotechnical studies), it may be necessary to employ dynamic compaction (process in which heavy weights are systematically and repeatedely dropped on the pad), and graders and bulldozers used to achieve the required levels and grades. The total area for the maximum temporary turbine work area (244 turbines) is approximately 470 acres, which takes into account overlap with the TLUA (Figure 6.1-2). The topsoil from the crane pads would be scraped and stockpiled, and put back in place during reclamation of the crane pads to BLM standards, as further discussed in Section 2.13.

A 10 acre site will be allocated to install a batch plant, to be located either on site on BLMadministered land or adjacent to the gravel and aggregate source, for preparing and mixing the concrete used for the foundations for the WTGs, the transformers at the substation, the O&M building, and other project facilities. The batch plant will be cleared of all vegetation, graded and compacted. Prior to installation of the batch plant facilities, the area will be covered with gravel as required to support the circulation of trucks and other equipment. The batch plant complex will consist of a mixing plant, areas for sand and gravel stockpiles, an access road, and truck load out and truck turnaround areas. The batch plant itself will consist of cement storage silos, water and mixture tanks, gravel hoppers, and conveyors to deliver different materials. During construction, materials will be taken from stockpiles and dumped into hoppers with front-end loaders where they will be mixed together in the mixing plant and then loaded into ready-mix trucks in the truck loading area. The concrete will be delivered to each turbine site, substation and O&M building, and other locations as needed. Concrete ready-mix trucks will be washed out at designated locations designed for that purpose. At those locations, all effluent will be contained and refuse concrete will be reclaimed. Following completion of construction, all components of the batch plant will be demobilized and the site will be reclaimed to BLM standards as further discussed in Section 2.13.

#### **1.3.9** Water usage, amounts, sources (during construction and operations)

Water sources will be determined prior to the start of construction, and arrangements to procure necessary water will be finalized and included in the Construction Operation and Maintenance (COM) plan. A total of about 20,000 gallons of water per turbine will be needed for batching concrete. Based on the maximum of 244 turbines, a total of 5,000,000 gallons of water will be needed for turbines. In addition, approximately 15,000,000 gallons of water are expected to be required for road maintenance and dust suppression. In total, approximately 20,000,000 gallons (61.4 acre feet) of water will be needed for the project during construction. All water would be delivered from the selected source, by truck to the Batch Plant and project area. Up to 3500 vehicle trips would be required for water delivery. Temporary water storage tanks would be installed support these water needs.

#### **1.3.10** Erosion control and stormwater drainage

Erosion and Sediment control measures would be implemented during construction. These would include stabilization measures for disturbed areas and structural controls to divert runoff. Prior to construction, and continuing through operations, maintenance and decommissioning, a Storm Water Pollution Prevention Plan (SWPPP) will be developed and implemented.

#### 1.3.11 Vegetation treatment, weed management, and any proposed use of herbicides

During construction, operation, maintenance and decommissioning phases, Ocotillo Express would abide by noxious weed control procedures as developed in cooperation with the BLM and Imperial County. The establishment of noxious/invasive vegetation can be limited by early detection and eradication. Ocotillo Express would work with the BLM and Imperial County to develop procedures to control the spread of noxious weeds and invasive plants. If chemical treatment is applied, it would be consistent with BLM's Record of Decision: Vegetation Treatments Using Herbicides (September 2007), as supported by the FEIS for Vegetation Treatments Using Herbicides (June 2007). Specific control measures may include:

- Cleaning vehicles that are required to go off designated roadways;
- Reseeding of temporarily disturbed areas (e.g., portions of access roads, trenches for the underground collection system, turbine work areas) with an agency-certified weed-free mixture of native grasses, forbs, and shrubs;
- Using weed-free fill;
- Annual post-construction monitoring and treatment of access roads and turbine sites for a designated period following construction;
- Storing equipment, materials, and vehicles at specified work areas or construction yards; and
- Confining personal vehicles, sanitary facilities, and staging areas to a limited number of specified weed-free locations.

#### **1.3.12** Waste and hazardous materials management

All construction related waste will be stored within a temporary use area until it is collected for transport to a final landfill destination. Materials that can be recycled will be stored and transported separately. Ocotillo Express will coordinate with local landfills prior to commencement of construction. Hazardous materials are typically limited for a project of this

nature. However, the following materials are anticipated to be used or produced during construction and operation of the proposed action:

- Fuel (Diesel and Unleaded) for construction equipment and vehicles
- Lubricants and Mineral Oils
- Cleaners, industrial material

These substances will be contained and disposed of according to local, state, and federal regulations. In addition, Ocotillo Express would work with the BLM and other appropriate agencies to implement the following actions:

- Develop a hazardous materials management plan addressing storage, use, transportation, and disposal of each hazardous material anticipated to be used at the site. The plan shall identify all hazardous materials that would be used, stored, or transported at the site. It shall establish inspection procedures, storage requirements, storage quantity limits, inventory control, nonhazardous product substitutes, and disposition of excess materials. The plan shall also identify requirements for notices to federal and local emergency response authorities and include emergency response plans.
- Develop a waste management plan identifying the waste streams that are expected to be generated at the site and addressing hazardous waste determination procedures, waste storage locations, waste-specific management and disposal requirements, inspection procedures, and waste minimization procedures. This plan shall address all solid and liquid wastes that may be generated at the site.

#### **1.3.13** Fire protection

The potential exists for on-site, man-caused fires to occur during the construction period due to exhaust fumes, storage of flammable liquids, fueling practices, and smoking. All workers will be trained to prevent fire emergencies and to deal with them quickly and effectively if they do occur. Crews would carry fire prevention equipment and consult with the El Centro District during high fire danger. A comprehensive Fire Management Plan will be prepared and included in the COM Plan. Appropriate fire protection methods will be utilized during operations, maintenance and decommission of the Project, as well as during construction.

#### **1.3.14** Site security and fencing proposed (during construction and operations)

The security fence surrounding the substation/switchyard and the O&M building will be the only permanent fencing associated with the proposed action. The type and height of this security fence, and the need for temporary security fencing around temporary construction areas, will be determined based on an assessment of risk prior to commencement of construction. The gate in the substation and O&M building fence will remain locked whenever these facilities are unattended. During the construction phase, access roads may have gates or signs installed, as necessary, to control public access to the site for safety reasons. However, access will be preserved for private landowners and BLM-permitted uses. Adaptive management based on survey results will be utilized, and protective fencing may be utilized as a means to mitigate for added access to the Project.

#### 1.3.15 Electrical components, new equipment and existing system upgrades

The proposed facility will connect to the new SDG&E Sunrise Powerlink 500kV transmission line scheduled for completion in June 2012 across the middle of the project site. The Point of Interconnection will be adjacent to the project substation. A new substation, electrical collection system, padmount transformer vaults (if used), and above ground junction boxes will be installed. Furthermore, a 500 kV above ground stub line will connect the new substation to the new SDG&E Sunrise Powerlink 500 kV line. Section 2.11 discusses these electrical components in further detail.

#### **1.3.16** Interconnection to electrical grid

In addition to the turbines, the project will include the construction of twenty-eight 34.5 kV electrical collection system circuits connecting into a new high voltage (HV) main transformer located at the substation. The new substation will be located within the project area, near the new SDG&E 500kV line. The collection lines connecting one turbine to the next and to the project substation will be buried underground generally adjacent to the interior turbine access roads as noted above. Above ground components of the collection system will include pad mounted transformers alongside each turbine, junction boxes throughout the project site, the main substation/switchyard (which will be fenced), and the overhead 500 kV stub line connecting the switchyard to the new 500 kV transmission line.

#### **1.3.17** Spill prevention and containment for construction and operation of facility

Prior to any hazardous materials being onsite, Ocotillo Express will prepare and implement a Hazardous Materials Business Plan/Spill Prevention Control and Countermeasures Plan (Plan) to avoid spills and minimize impacts in the event of a spill. The plan will ensure that adequate containment would be provided to control accidental spills, that adequate spill response equipment and absorbents would be readily available, and that personnel would be properly trained in how to control and clean up any spills.

#### **1.3.18** Health and safety program

All personnel assigned to this project will work under strict approved safety guidelines that will be established prior to the start of construction and remain in place during construction, operations, maintenance and decommissioning.

Safety is of the utmost importance on the construction site. Numerous hazards exist, both to the workers, and to those traveling through or near the site on public access roads. Therefore, warning signs will be posted along the access roads indicating the dates of construction activities, and recommending that the public take alternate routes during that time period. In addition, areas where supplies and equipment will be stored or areas deemed hazardous will also be properly secured (e.g. fenced) to prevent theft, tampering, or injury. Areas with construction and work in progress will be secured so that no one without proper safety training will be able to access them. WTG access doors will be locked whenever the turbine sites are unattended.

Workers will be trained in health and safety issues as they pertain to the work site as to prevent safety issues from arising and to address those that do. In case of emergency, there will be an

emergency response plan in place, and workers will be trained in proper implementation of its protocols with the general construction contractor taking primary responsibility.

# 1.4 OTHER FEDERAL, STATE AND LOCAL AGENCY PERMIT REQUIREMENTS

# 1.4.1 Required permits (entire project area on both BLM-administered and private lands)

| PROCESS/PERMIT                                                                                                                             | JURISDICTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Draft PA/draft EIS/EIR<br>Proposed PA/final EIS/EIR<br>Record of Decision (ROD)<br>Land Use Plan Amendment<br>Native American Consultation | National Environmental Policy Act compliance<br>required for Federal actions. Likely joint<br>EIR/EIS with Imperial County<br>Part of EIR process; Federal Land Policy and<br>Management Act of 1976; BLM Planning<br>Regulations (43 CFR Part 1600); BLM Land<br>Use Planning Handbook (H-1601-1_<br>Indian tribes must be consulted to identify<br>sacred sites and other palces of traditional                                                                                                                                                                                                                                                         |
| Right of Way (ROW) Grant<br>National Historic Preservation Act,<br>Section 106 Compliance                                                  | religious and cultural importance.<br>Consultation will be done by BLM<br>Authorized under Title V of FLPMA (43 U.S.C.<br>1761-1771)<br>Identification and evaluation of cultural                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            | resources within Area of Potential Effects in<br>accordance with BLM requirements. BLM will<br>consult with State Historic Preservation Officer<br>and other parties consistent with BLM/SHPO<br>Protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Archeological Resources<br>Protection Act, Cultural Resource<br>Use Permit                                                                 | A BLM Cultural Use Permit must be obtained<br>for the purposes of testing to determine the<br>NRHP significance of identified sites and to<br>conduct data recovery on sites adversely<br>affected by project construction and operation.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fieldwork Authorization                                                                                                                    | A BLM Fieldwork Authorization must be obtained prior to conducting Class II or Class III cultural resource inventories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Biological Opinion/Endangered Species Act/Section 7 Consultation                                                                           | Based on listed or proposed species,<br>designated or proposed critical habitat on-site<br>or affected by project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nationwide Permit 12/Clean Water<br>Act Sect. 404                                                                                          | Depending on water discharges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Determination of No Hazard                                                                                                                 | Confirming no hazard to military or other air operations in area – on line filing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                            | https://oeaaa.faa.gov/oeaaa/external/portal.jsp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Consultation                                                                                                                               | Operations, military radar impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Consultation                                                                                                                               | Affect on border surveillance aircraft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Consultation                                                                                                                               | Affect on weather radar. [Nearest Yuma, 140 km ESE , San Diego 140 km WNW]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROCESS/PERMIT                                                                                                                             | JURSIDICTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Renewables Portfolio Standards                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (RPS) Certification                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | Draft PA/draft EIS/EIR         Proposed PA/final EIS/EIR         Record of Decision (ROD)         Land Use Plan Amendment         Native American Consultation         Right of Way (ROW) Grant         National Historic Preservation Act,         Section 106 Compliance         Archeological       Resources         Protection Act, Cultural Resource         Use Permit         Fieldwork Authorization         Biological       Opinion/Endangered         Species Act/Section 7 Consultation         Act Sect. 404         Determination of No Hazard         Consultation         Consultation         Rould Consultation         PROCESS/PERMIT |

| RWQCB Region 7                         | Elimination System (NPDES)<br>Permit<br>Stormwater Pollution Prevention<br>Plan (SWPPP)<br>Water Quality Certification/Clean<br>Water Act Sect 401 |                                                                                                                                                                                                                                        |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caltrans                               | <b>ROW Encroachment Permit</b>                                                                                                                     | Access across State ROW                                                                                                                                                                                                                |
|                                        | Transportation Permit                                                                                                                              | Weight, size, route                                                                                                                                                                                                                    |
| Native American<br>Heritage Commission | Consultation on Sacred Areas to comply with State requirements                                                                                     | The NAHC must be contacted to determine<br>the presence of known Native American<br>sacred areas in the project vicinity.<br>Consultation is ongoing and will be completed<br>by the applicant prior to the onset of NEPA<br>analysis. |

| LOCAL AGENCY    | PROCESS/PERMIT                                                                                              | JURISDICTION                                                                                                              |
|-----------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Imperial County | Environmental Impact Report (EIR)<br>Determination /Findings<br>Mitigation Monitoring and<br>Reporting Plan | California Environmental Quality Act<br>compliance required for State and Local<br>actions. Likely joint EIR/EIS with BLM |
|                 | Conditional Use Permit/Variance                                                                             | Turbines and Met Towers                                                                                                   |
|                 | <b>ROW Encroachment Permit</b>                                                                              | Access across road ROW                                                                                                    |
|                 | Water Well Permit                                                                                           | If on-site water supply                                                                                                   |
|                 | Septic System Permit                                                                                        | If on-site disposal                                                                                                       |
|                 | Building, Grading Permits                                                                                   | Site construction                                                                                                         |

# 1.4.2 Status of permits

| FEDERAL AGENCY                   | PROCESS/PERMIT                                                                                                                                               | STATUS                                                                                                                                                                                                                                                               |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bureau of Land<br>Management     | Environmental Impact Statement<br>(EIS)<br>Record of Decision (ROD)<br>Management Plan Amendment<br>Native American Consultation<br>Right of Way (ROW) Grant | Plan of Development and Type III R-O-W<br>grant application being developed.<br>Likely joint EIR/EIS with Imperial County<br>Pending (part of EIR process)<br>Pending (to be conducted by BLM)<br>Pendng (Authorized under Title V of FLPMA<br>(43 U.S.C. 1761-1771) |
| US Fish & Wildlife<br>Service    | <b>Biological Opinion</b> /Endangered Species Act/Section 7 Consultation                                                                                     | To come in due course - Based on listed species and habitat on-site or affected by project                                                                                                                                                                           |
| U. S. Army Corps of<br>Engineers | Nationwide Permit 12/Clean Water<br>Act Sect. 404                                                                                                            | To come in due course - Depending on water discharges                                                                                                                                                                                                                |
| Federal Aviation<br>Agency       | Determination of No Hazard                                                                                                                                   | DNH's have been issued by FAA                                                                                                                                                                                                                                        |

| U.S. DoD                                             | Consultation                                                                                                                                                                   | OE consultant has been verbally advised that Navy has no objection                                                                          |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Homeland Security                                    | Consultation                                                                                                                                                                   | Pending FAA process                                                                                                                         |
| NOAA National<br>Weather Service/Radar<br>Operations | Consultation                                                                                                                                                                   | Pending FAA process                                                                                                                         |
| STATE                                                |                                                                                                                                                                                |                                                                                                                                             |
| California Energy<br>Commission                      | Renewables Portfolio Standards (RPS) Certification                                                                                                                             | Application will be filed in due course                                                                                                     |
| Colorado River<br>RWQCB Region 7                     | National Point Discharge<br>Elimination System (NPDES)<br>Permit<br>Stormwater Pollution Prevention<br>Plan (SWPPP)<br>Water Quality Certification/Clean<br>Water Act Sect 401 |                                                                                                                                             |
| Caltrans                                             | ROW Encroachment Permit                                                                                                                                                        | Will be obtained in due course                                                                                                              |
|                                                      | Transportation Permit                                                                                                                                                          | Will be obtained in due course                                                                                                              |
| California State Fish<br>And Game (CDFG)             | Consultation                                                                                                                                                                   | California Endangered Species Act (CESA) of 1984,<br>Fish and Game Code §§ 2050-2098                                                        |
|                                                      |                                                                                                                                                                                | Fish and Game Code §§1600-1607, Streambed Alteration Agreement (SAA)                                                                        |
|                                                      |                                                                                                                                                                                | Fish and Game Code Fully Protected Species<br>including: § 3511: birds<br>§ 4700: mammals § 5050: reptiles and amphibians<br>§ 5515: fishes |
|                                                      |                                                                                                                                                                                | Fish and Game Code § 1900 et seq. Native Plant<br>Protection Act (NPPA) of 1977                                                             |
|                                                      |                                                                                                                                                                                | Fish and Game Code §§ 3503, 3503.5, and 3513.                                                                                               |
|                                                      |                                                                                                                                                                                | Title 14 California Code of Regulations §§ 670.2 and 670.5                                                                                  |
| State Historic<br>Preservation Officer               | State Historic Preservation Acts                                                                                                                                               | Pending completion in due course                                                                                                            |
| Native American<br>Heritage Commission               | Consultation                                                                                                                                                                   | Letters/telephone calls to NAHC-identified tribes or bands. Perhaps satisfied by BLM's consultations with Tribes                            |
| California State Fish<br>And Game (CDFG)             | Consultation                                                                                                                                                                   | Letters/meetings to ensure compliance with state code.                                                                                      |
| LOCAL                                                |                                                                                                                                                                                |                                                                                                                                             |
| Imperial County                                      | Environmental Impact Report (EIR)<br>Determination /Findings<br>Mitigation Monitoring and<br>Reporting Plan                                                                    | California Environmental Quality Act<br>compliance required for State and Local<br>actions. Likely joint EIR/EIS with BLM                   |
|                                                      | Conditional Use Permit/Variance                                                                                                                                                | Applications pending for two met towers                                                                                                     |
|                                                      | ROW Encroachment Permit                                                                                                                                                        | To be obtained in due course                                                                                                                |
|                                                      | Water Well Permit                                                                                                                                                              | Need to be determined in due course                                                                                                         |
|                                                      | Septic System Permit                                                                                                                                                           | Need to be determined in due course                                                                                                         |
|                                                      | Building, Grading Permits                                                                                                                                                      | Will be obtained in due course                                                                                                              |

## 1.5 FINANCIAL AND TECHNICAL CAPABILITY OF APPLICANT

Pattern Energy is one the most experienced and best-capitalized renewable energy and transmission development companies in the U.S. This group has successfully developed, financed and placed into operation 2,000 MW of wind power across 11 states, representing over \$3 billion in investment. In addition to having a full range of development capabilities, the Company provides construction management during the building phase in addition to operations management, turbine and BOP service and maintenance, financial management and reporting functions. The table below summarizes the track record of projects placed into service by the Pattern team while at Babcock & Brown, and excludes certain projects which were acquired by our team as late-stage developments.

Pattern recently financed and commenced construction on the 101MW Hatchet Ridge Wind Farm in Shasta County, California, with a cost of approximately \$200 million. The Ocotillo Express Wind Project will likely cost approximately \$1 billion. As noted below, the Pattern team has significant experience and a successful track record in completing projects of similar size and scale.

| No | Description     | Locn | Mfr     | Units | MW    | Total MW | Compl Date |
|----|-----------------|------|---------|-------|-------|----------|------------|
| 1  | Sweetwater 1    | ТΧ   | GE      | 25    | 37.5  | 37.5     | 2003       |
| 2  | Caprock         | NM   | МНІ     | 80    | 80.0  | 171.5    | 2004       |
| 3  | Sweetwater 2    | ТΧ   | GE      | 61    | 91.5  | 171.5    |            |
| 4  | Bear Creek      | PA   | Gamesa  | 12    | 24.0  |          | 2005       |
| 5  | Jersey Atlantic | NJ   | GE      | 5     | 7.5   | 216.5    |            |
| 6  | Kumeyaay        | CA   | Gamesa  | 25    | 50.0  | 210.5    |            |
| 7  | Sweetwater 3    | ТΧ   | GE      | 90    | 135.0 |          |            |
| 8  | Aragonne Mesa   | NM   | МНІ     | 90    | 90.0  |          |            |
| 9  | GSG             | L    | Gamesa  | 40    | 80.0  | 208.0    | 2006       |
| 10 | Buena Vista     | CA   | МНІ     | 38    | 38.0  |          |            |
| 11 | Cedar Creek     | со   | МНІ     | 221   | 300.5 | 701.8    | 2007       |
|    |                 |      | GE      | 53    | 300.3 |          |            |
| 12 | Sweetwater 4a   | ТΧ   | MHI     | 135   | 135.0 |          |            |
| 13 | Sweetwater 4b   | ТΧ   | Siemens | 46    | 105.8 |          |            |

Plan of Development Ocotillo Express Wind

| 14 | Sweetwater 5 | тх | Siemens | 35   | 80.5  |        |      |
|----|--------------|----|---------|------|-------|--------|------|
| 15 | Allegheny 1* | PA | Gamesa  | 40   | 80.0  |        |      |
| 16 | Gulf Wind    | ТΧ | МНІ     | 118  | 283.2 |        |      |
| 17 | South Trent  | ТΧ | Siemens | 44   | 101.2 |        |      |
| 18 | Butler Ridge | WI | GE      | 36   | 54.0  | 568.9  | 2008 |
| 19 | Wessington   | SD | GE      | 34   | 51.0  |        |      |
| 20 | Majestic     | ТΧ | GE      | 53   | 79.5  |        |      |
|    |              |    | Total   | 1281 |       | 1904.2 |      |

\*Construction Management Agreement

## 2.0 CONSTRUCTION OF FACILITIES

## 2.1 WIND TURBINE DESIGN, LAYOUT, INSTALLATION, AND CONSTRUCTION PROCESSES INCLUDING TIMETABLE AND SEQUENCE OF CONSTRUCTION

Turbines will be placed in a series of southeast-northwest oriented rows (or arrays) to best utilize prevailing wind flows across the project site. Turbines within each array will be connected by gravel or crushed caliche surfaced access roads and underground 34.5 kV collection circuits. To minimize downwind array losses, spacing between turbine rows will be at least 10x rotor diameters (RD) (950 meters) and 2.0 to 3.5 RD (186 to 325.5 meters) for in-row spacing. Turbine towers and foundations will be designed to survive a gust of wind more than 133.1 miles per hour (mph) with the blades pitched in their most vulnerable position. Turbine foundations will be approximately eight feet deep with a projection of approximately six inches above final grade and utilize approximately 350 cubic yards of concrete. In addition, each tapered tubular steel tower will have a maximum 15 foot (4.5 meter) diameter base.

Construction of each of the two phases of the wind generation facility is anticipated to be completed over a period of 9 to 12 months. During construction, up to 300 employees would be

required. Power supply for construction will be through the use of diesel generators and/or purchase of power from the local utility. A summary of facility components and associated ground disturbance from those components is provided in table 2.1-1. This section is followed by detailed descriptions of each project component.

Five to ten WTGs can be erected weekly. Construction of Phase I is anticipated to commence in the early part of 2012, with the final mechanical completion, commissioning, and electrical testing of Phase I planned to be completed before year-end 2012. Phase II is anticipated to follow in 2013.

Turbine crane pads would be constructed for each wind turbine. Each turbine would require a 400 foot diameter area (2.9 acre) temporary construction area and a permanent 75 foot diameter area (0.3 acre) for the tower within the temporary construction area. Clearing and grading would be accomplished using bulldozers, backhoes and road graders.

The temporary work area for each site would be used for the crane pad, equipment laydown, and other construction related needs. Within the area of temporary disturbance, an area of 75 by 150 feet with a maximum slope of 1% is required to support the crane used in lifting the turbine components into place. The crane pad would not be surfaced with concrete, but would be compacted to provide a stable base for safe operation of cranes. To meet the necessary compaction standards as determined by geotechnical studies, it may be necessary to employ dynamic compaction; graders and bulldozers will be used to achieve the required levels and grades.

Within the temporary construction area, permanent foundations would be excavated, compacted, and constructed of structural concrete and steel reinforcement as directed by the tower supplier and geotechnical engineer's recommendations. The wind turbines freestanding tubular towers would be connected by anchor bolts to the concrete foundation at the pedestal. The tapered tubular, steel towers would have a maximum 15 foot (4.5 meter) diameter base. The area immediately surrounding the concrete pedestal will be covered with gravel to provide a stable surface for future maintenance vehicles accessing the turbine. After construction, all temporary disturbances associated with the turbine installation would be reclaimed to BLM specifications.

## 2.2 GEOTECHNICAL STUDIES THAT MAY BE PLANNED

A preliminary geotechnical analysis of the project area will be conducted to describe soil and geology suitability. Additional site specific geotechnical studies may be required for use in the final design of the turbine foundations.

# 2.3 Phased projects, describe approach to construction and operations

Construction of a wind project is a relatively straightforward process with the actual ground disturbance of the turbines and plant infrastructure (civil and electrical) typically taking up less than 3% of the total project area (AWEA 2008). Construction begins with installation of civil improvements, including site laydown areas for turbine and tower deliveries, construction of the access/maintenance roads, installation of the underground runs for electrical cabling, construction of turbine/transformer foundations, and the preparation of crane pads for erection of the turbines. The second construction phase, where some of the works will proceed in parallel with the civil works, includes installation of the pad mount transformers, construction of the main substation, placement of the pad mount transformers, construction phase includes mechanical completion of all wind turbine generators, substation and other facilities

followed by commissioning and testing of each turbine, the substation, utility interconnection, testing of the electrical system, and restoration of temporary construction areas, laydown areas and turbine crane pads.

## 2.4 Access and transportation system, component delivery, worker Access

New internal long-term access roads will be constructed to provide construction vehicle access to the turbine locations during the construction phase, and service vehicle access during the operations phase. During the construction phase of the project, new road width will be 36 feet. This will be reduced to 16 feet during the operations phase and the remaining 20 foot wide area of short term disturbance will be reclaimed to BLM specifications. These long term access roads will include a turn-around at the end of each turbine array and will enable construction and post-construction operational personnel to safely access the turbine locations throughout the project area.

There would be up a total of 55 miles of such new internal project access roads. There would be up to 110 acres total long term disturbance from new road construction. The TLUA to construct these access roads and the electric collection system will be designated to include the temporary widths for the roads and collections system, plus the area in-between. The TLUA will average 200 feet wide to accommodate crane movement and material delivery and would be up to 1300 acres of short term temporary disturbance. The final long term roads will be compacted and surfaced with gravel aggregate or crushed caliche from BLM-permitted sources.

Internal access road layout will incorporate existing BLM standards regarding road design, construction, and maintenance such as those described in the 2005 Wind Energy PEIS and ROD (BLM 2005), BLM 9113 Manual (BLM and USFS 1985) and the Surface Operating Standards for Oil and Gas Exploration and Development (Fourth Edition 2006) (i.e., the Gold Book), as well as BLM Visual Resource Management Manuals.

## 2.5 Construction work force numbers, vehicles, equipment, timeframes

Up to 300 workers will be employed during each 9-12 month construction period, and the majority of these workers would be onsite daily during construction. The majority of construction personnel will stay in hotels and rental properties in El Centro, California. During construction, potable water and sanitary facilities will be provided to support the construction crews. Temporary port-a-potty facilities will be available at the laydown area and O&M Building. Bottled water from a commercial provider will be utilized and will be delivered to the site. A plan for employee transportation to and from the project area will be developed and included as part of the COM plan. It is anticipated that employee carpooling will be required to minimize vehicle traffic to and from the site, and minimize the area necessary for construction phase parking. No more than 100 employee vehicles are anticipated on the site at any one time.

#### MAJOR FACILITIES (INCLUDING VEHICLES AND NUMBER OF TRIPS)

- Wind turbine generators Wind turbine technology is continually improving and the cost and availability of specific types of turbines varies from year to year. A representative range of turbine types that are most likely to be used for the project are being considered.
- Access Roads The Ocotillo Express Wind project area currently has existing access via Interstate 8 to the south and/or Highway 8 (Imperial Highway), which crosses near the center of the project area. There would be up to 55 miles of new, permanent interior site access and maintenance roads constructed.
- Electrical Collection and Connection The project would include the construction of up to twenty-eight 34.5 kV circuits connecting into a 500kV transformer and substation located adjacent to the new SDG&E 500 kV line. The interior collection lines would be buried underground and adjacent to the interior maintenance roads.
- Construction equipment would consist of standard construction equipment such as graders, bulldozers, backhoes, cranes, delivery trucks, semi trucks, and welding rigs. Construction would require an average of ten truck trips on area highways for delivery of each turbine and associated components. The anticipated travel route for delivery of construction materials will be determined and included as part of the COM plan.

#### **ANCILLARY FACILITIES**

- Operations and Maintenance Facility (4 acres)Permanant
- Substation and Switchyard (10 acres) Permanant
- Parking and Storage (4 acres) Temporary
- Batching Plant (10-acres) Temporary
- Sand and Gravel Source (15-acres)
- Permanent Meteorological Towers Ocotillo Wind proposes to install up to 4 permanent met towers within the project area (i.e. towers that would be installed at time of construction and stay in place until decommissioning of the project). These towers would be 80 meters in height, would be self-supporting monopole structures, and would be located at sites to be determined in due course.
- The same types of vehicles used during the construction of major facilities would also be used in construction of ancillary facilities.

#### TIMEFRAMES

- Commence civil works (roads, underground electrical, foundations) 1st quarter 2012
- Commence balance of plant electrical/civil works 1st quarter 2012
- Turbine deliveries commence 2nd quarter 2012
- Turbine commissioning, testing, and commercial operation <sup>4th</sup> quarter 2012

## 2.6 SITE PREPARATION, SURVEYING, AND STAKING

The centerline and exterior limits of the ROW will be surveyed and clearly marked by stakes and flagging at 200ft intervals, or more closely if necessary to maintain a sight line. All construction activities will be confined to these areas to prevent unnecessarily impacting sensitive areas. Stakes and flagging that are disturbed during construction will be repaired or replaced before construction continues. Stakes and flagging will be removed when construction and restoration are completed.

## 2.7 SITE PREPARATION, VEGETATION REMOVAL, AND TREATMENT

Vegetation would be removed from permanent facility sites, such as the O&M building and substation and switchyard, by blading. Temporary disturbance sites would be reclaimed to BLM specifications. To reestablish healthy vegetation communities, a BLM approved seed mix will be used and additional restoration measures will be developed as necessary. Further restoration plans are described in Section 2.13.

## 2.8 SITE CLEARING, GRADING, AND EXCAVATION

Clearing and grading would be necessary for new roads, turbine pads, O&M facility, substation, batching plant, and the temporary laydown area. Clearing and grading will be accomplished using bulldozers, road graders or other standard earth-moving equipment. For the most part, the total area to be cleared of vegetation would be less than temporary work areas requested to minimize erosion and avoid other potential environmental impacts.

## 2.9 GRAVEL, AGGREGATE, CONCRETE NEEDS AND SOURCES

Construction of access roads, facility foundations, and temporary laydown areas associated with the proposed action will require access to sand and gravel. Appropriate sources of sand and gravel in proximity to the project area will be identified by a construction contractor and permitted through the BLM. Any sand and gravel source will require biological and cultural resource clearance and the appropriate level of BLM NEPA analysis would have to be completed prior to utilization.

Gravel and concrete aggregate would come from up to three, 15-acre locations within or near the project area (Figure Z). The materials will be trucked to the batching plant and placed into stockpiles. Cement will be delivered on trucks from a source to be identified and stored in two to five silos on site. Approximately 510,000 pounds of sand, 800,000 pounds of gravel and 240,000 pounds of cement will be needed for each turbine site. Based on a maximum of 244 turbines installed, 124,500,000 pounds of sand, 195,200,000 pounds of gravel and 58,560,000 pounds of cement will be utilized. Additional sand, gravel and cement will be required for construction of the substation, switchyard and O&M facilities.

#### 2.10 WIND TURBINE ASSEMBLY AND CONSTRUCTION

Wind turbines consist of three main components: the turbine tower, the nacelle, and the rotor consisting of the hub and the blades (Figure 2.10-1). The nacelle is the portion of the wind turbine mounted at the top of the tower, which houses the wind turbine itself and the gearbox. Turbine hub heights and rotor diameters (RD) for the potential turbines may have slight variations, but for purposes of analysis will not exceed the 2.3 MW turbine specifications.

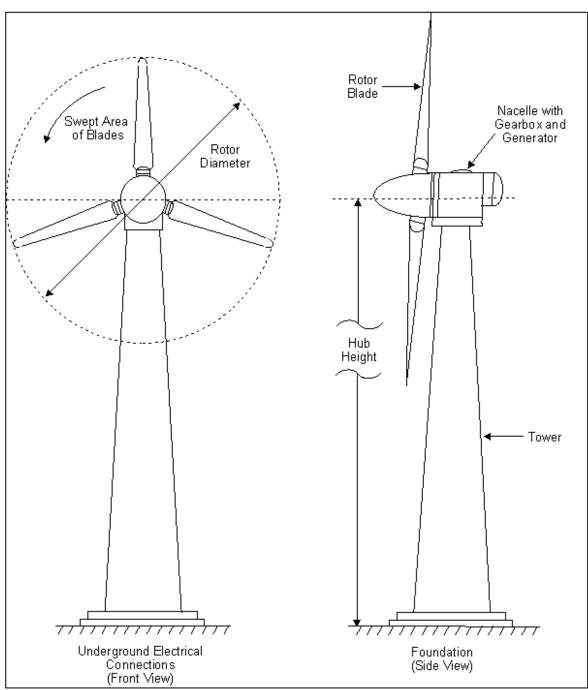



Figure 2.10-1 Turbine Technology Diagram.

|                      |               | 1                 |                 |                              |                      |                        |
|----------------------|---------------|-------------------|-----------------|------------------------------|----------------------|------------------------|
| Turbine              | Hub<br>Height | Rotor<br>Diameter | Total<br>Height | Rated Capacity<br>Wind Speed | Rotor Speed<br>(RPM) | Tower Base<br>Diameter |
| 2.3 MW<br>Siemens    | 80 m          | 93 m              | 126.5 m         | 12-13mps                     | 6-16                 | 14.76 (4.5m)           |
| 1.8 MW V90<br>Vestas | 80m           | 90m               | 125m            | 12 mps                       | 9-14.9               | <15 ft                 |

 Table 2.10-1 Wind Turbine Specifications

The towers will be a tapered tubular steel structure manufactured in three or four sections depending on the tower height, and approximately 15 feet (4.5 meters) in diameter at the base. The towers will be painted white per FAA requirements. A service platform at the top of each section will allow for access to the tower's connecting bolts for routine inspection. A ladder inside the structure will ascend to the nacelle to provide access for turbine maintenance. The tower will be equipped with interior lighting and a safety glide cable alongside the ladder. The towers will be fabricated and erected in sections.

The nacelle houses the main mechanical components of the wind turbine generator, the drive train, gearbox, and generator. The nacelle will be equipped with an anemometer and a wind vane that signals wind speed and direction information to an electronic controller. A mechanism will use electric motors to rotate (yaw) the nacelle and rotor to keep the turbine pointed into the wind to maximize energy capture. An enclosed steel-reinforced fiberglass shell houses the nacelle to protect internal machinery from the elements.

Modern wind turbines have three-bladed rotors. The diameter of the circle swept by the blades will be no more than 305 feet (93 meters). If the maximum number of 244 turbines were constructed, a total rotor swept area of 1,660,000 m<sup>2</sup> (415 acres) would be utilized. Generally, larger wind turbine generators have slower rotating blades, but the specific RPM values depend on aerodynamic design and vary across machines. Based on the turbines considered, the blades will turn at no more than 16 rotations per minute (RPM).

Each turbine will be equipped with a computer control system to monitor variables consisting of wind speed and direction, air and machine temperatures, electrical voltages, currents, vibrations, blade pitch, and yaw (side to side) angles. In addition to monitoring, a primary function of the control system will be nacelle and power operations. Nacelle functions include yawing the nacelle into the wind, pitching the blades, and applying the brakes if necessary.

Power operations controlled at the bus cabinet inside the base of the tower include operation of the main breakers to engage the generator with the grid as well as control of ancillary breakers and systems. The control system will always run to ensure that the machines operate efficiently and safely.

Each turbine will be connected via fiber optic cables to a central Supervisory Control and Data Acquisition (SCADA) system that will be owned by the Proponent. The SCADA system allows for controlling and monitoring individual turbines and the wind plant as a whole from a central host computer or a remote personal computer. In the event of problems, the SCADA system can also send signals to a fax, pager, or cell phone to alert operations staff. The SCADA system will

also be connected to CAISO and SDG&E, through a third party telecommunications provider, whose sytem will need to be extended to the control room of the Project's substation.

Turbines will be equipped with a braking system to stop the rotor. The braking system is designed to bring the rotor to a halt under all foreseeable conditions. The turbines also will be equipped with a parking brake used to keep the rotor stationary while maintenance or inspection is performed.

## 2.11 ELECTRICAL CONSTRUCTION ACTIVITIES

The new SDG&E 500 kV transmission line that will cross through the central part of the site will be the primary power transmission line from the facility. A 34.5 kV underground electrical collector system will be necessary to connect the turbines to the project substation. Approximately 65 miles of collector cable circuits and fiber optic cables will be placed underground in trenches either adjacent to access roads or, in some cases, running cross country within the ROW. Installation of these cables is further discussed in Section 3.1.1 below.

Vaults and splice boxes will be placed aboveground at locations as needed. There will be several above ground junction boxes that will be used in various locations. Junction boxes are approximately four feet by six feet and four feet in height.

## 2.12 AVIATION LIGHTING (WIND TURBINES, TRANSMISSION)

Turbines will be lit as required by the Federal Aviation Administration (FAA). Based on the FAA Obstruction Marking and Lighting Advisory Circular (AC70/7460-1K), no structural markings or alternative colors are proposed for the wind turbines. For nighttime visibility, two flashing red beacons will be mounted on the nacelle. Lights are not recommended to be placed on all turbines, so it is likely that only those turbines at each end of the array will have lights to mark the extent of the facility.

#### 2.13 SITE STABILIZATION, PROTECTION, AND RECLAMATION PRACTICES

Upon completion of the construction aspect of the project, all soils disturbed by short term access roads and facilities will be reclaimed by stabilization and rehabilitation. Reseeding and fertilization will take place according to specifications provided by BLM and access to rights of way will be limited to the public with the use of gates and signs where necessary to allow the revegetation of replanted sites. After construction activities are complete, Ocotillo Wind will restore temporary disturbance areas. In areas with potential seed bearing soils, the top 3-6 inches of topsoil stripped and stockpiled during construction activities will be reapplied to temporary surface disturbances during restoration. To reestablish healthy vegetation communities, a BLM approved seed mix will be used. Additional restoration measures will be developed as necessary.

The Ocotillo Express Wind project will have a lifetime after which cost-effective operation will no longer be feasible. The anticipated life of the Ocotillo Express Wind Generation Facility is 30 years, and it is likely that after that time the site would be decommissioned and existing facilities and equipment would be removed. It is also possible that the facility owners may wish to work with the BLM to replace the old facilities with a new project on the same site. However, that option is not considered in this Plan of Development (POD).

Prior to the termination of the ROW authorization, a decommissioning plan will be developed consistent with the BLM Wind Energy PEIS/ROD, and approved by the BLM. The BMPs and stipulations developed for construction activities will be applied to similar activities during decommissioning. All roads and tower pads would be reclaimed in accordance with the BLM approved decommissioning plan.

## **3.0 RELATED FACILITIES AND SYSTEMS**

## 3.1 O&MFACILITY

A 12-acre O&M facility will be located in the central portion of the project area. The O&M building and yard will be constructed to store critical spare parts and provide a building for maintenance services. A concrete foundation will be required for the maintenance facility and the area immediately surrounding the building will be covered with gravel for vehicle parking. Any area within the fence not covered by concrete will be covered with gravel to minimize erosion and surface runoff. A permanent 7-foot high security fence surrounding the O&M facility and directional lighting will be installed. This chain link fence will have an open weave to enable viewing through to background landscape. Colors for the building and fence will be selected in consultation with BLM.

## 3.2 TRANSMISSION SYSTEM INTERCONNECT

#### 3.2.1 Existing and proposed transmission system

The project would include the construction of twenty-eight 34.5 kV circuits connecting into a 500kV transformer and substation located at the central part of the project area adjacent to the new SDG&E Sunrise Powerlink 500 kV line. The interior collection lines connecting one turbine to the next and to the project substation would be buried underground and generally adjacent to the interior maintenance roads. Above ground components to the electric system would include pad mounted transformers alongside each turbine, the main substation/switchyard (which would be fenced) and the overhead 500 kV stub line connecting the switchyard to the new 500 kV transmission line. The stub line is anticipated to be only a few hundred yards in length, at most.

#### 3.2.2 500 kV Substation

A 200 foot by 480 foot substation will be located adjacent to the O&M building within the 12acre facility area. The substation would be a 5 breaker, breaker and a half substation with three 500kV line terminals, one of which may also have a 500kV, 35 MVAr line reactor. Each line terminal will consist of one dedicated circuit breaker, one shared circuit breaker, along with any associated relays, switches, and lightening arrestors. A 500 kV above ground stub line will connect the substation to the new SDG&E 500 kV line. If possible, all towers, insulators and conductor will be non-reflective. Because the substation will be adjacent to the new line, the stub line will not require any additional disturbance. Construction of this substation will last approximately four to six months and will involve two primary stages: Site preparation and structural and electrical construction. Construction of the substation will begin with clearing vegetation and organic material from the site. The site will then be graded to subgrade elevation. Structural footings and underground utilities, along with electrical conduit and grounding grid will be installed, followed by aboveground structures and equipment. A chain link fence will be constructed around the new substation for security and to restrict unauthorized persons and wildlife from entering the substation. The site will be finish graded, gravel surfaced, and reclamation will be completed to minimize the visual appearance of the substation.

Control buildings will be added to the substation and will more than likely be constructed of prefabricated steel. Major equipment to be installed inside the control buildings consist of relay and control panels, alternating current and direct current load centers to provide power to equipment inside and outside the control building, a battery bank to provide a back-up power supply, a heating/cooling system to prevent equipment failure, and communications equipment for remote control and monitoring of essential equipment.

Steel structures will be erected on concrete footings to support switches, electrical buswork, instrument transformers, lightning arrestors, and other equipment, as well as termination structures for incoming and outgoing transmission lines. Structures will be fabricated from tubular steel and galvanized or painted a BLM-approved color to blend in with predominant vegetation and soil types. Structures will be grounded by thermally welding one or more ground wires to each structure.

Major equipment will be set by crane and either bolted or welded to the foundations to resist seismic forces. Oil spill containment basins will be installed around major oil-filled transformers and other equipment. Smaller equipment, including air switches, current and voltage instrument transformers, insulators, electrical buswork, and conductors will be mounted on the steel structures.

Control cables will be pulled from panels in the control building, through the underground conduits and concrete trench system, to the appropriate equipment. After the cables are connected, the controls will be set to the proper settings, and all equipment will be tested before the transmission line is energized.

## **3.2.3** Status of Power Purchase Agreements

Ocotillo Wind posted the required \$500,000 deposit to be included in the first Phase I Interconnection Cluster Study, and applied for 565 MW of transmission capacity on the new Sunrise Powerlink, scheduled for completion in June 2012. Ocotillo Wind submitted a proposal into SDG&E's 2009 Request for Offers for Eligible Renewable Resources, and has been notified by SDG&E that the Project has been shortlisted. Initial meetings with SDG&E have already occurred, and the Power Purchase Agreement is expected to be finalized in early 2010. Based on our knowledge of the quality of the wind resource at the Ocotillo Wind Project Site, compared to potentially competing sites, and based on our knowledge of the market demand for cost-effective renewable energy in California, we are confident in our ability to secure a power purchase agreement or agreements for the full output of the project.

### 3.2.4 Status of Interconnect Agreement

Ocotillo Wind posted the required \$500,000 deposit to be included in the first Phase I Interconnection Cluster Study, and applied for 549.5 MW of transmission capacity on the new Sunrise Powerlink, scheduled for completion in June 2012. Under the new CAISO Large Generator Interconnection Procedures, the Phase I Interconnection Cluster Study will be complete in no more than 270 days after the close of the Open Window at the end of July, 2009, and the Phase II Study is expected to be completed, and an Interconnection Agreement proffered, in no more than one year after completion of the Phase I Interconnection Cluster Study. Thus, we anticipate executing an Interconnect Agreement for the Ocotillo Wind Project no later than the end of 2011.

## **3.2.5** General design and construction standards

Construction of the facilities will follow guidelines set forth by Best Management Practices (BMPs). For example, construction vehicle movement within the project boundary will be restricted to pre-designated access, contractor-required access, or public roads. In construction areas where ground disturbance is unavoidable, surface restoration will consist of returning disturbed areas back to their natural contour (if feasible), and reseeding with a BLM approved seed mix. A full list of BMPs will be included with the COM Plan.

## 3.3 METEOROLOGICAL TOWERS

Ocotillo Wind proposes to install up to four permanent met towers within the project area (Figure 6.1-1). The permanent met towers would be 80 meter, self-supporting monopole structures. The locations of these towers would be determined in due course. Ocotillo Wind also proposes to install up to 5 temporary Met towers, which would be removed prior to construction (Figure 6.1-1). These temporary towers would be 60 meter, guyed monopole structures.

## 3.4 OTHER RELATED SYSTEMS

# 3.4.1 Communications system requirements (microwave, fiber optics, hard wire, wireless) during construction and operation

Fiber optic cable for communications will also be necessary. Approximately 65 miles of fiber optic cables and collector cable circuits (Section 2.11) will be placed underground in trenches adjacent to access roads. Within the 200 foot wide temporary use area, trenches will be excavated up to 20 feet wide (to accommodate multiple circuits) and 3-5 feet deep. The cables will then be placed in the trench. Following placement of the cables, the trench will be backfilled and any topsoil set aside during excavation will be placed on top and the area restored. It is anticipated that a third party telecommunications provider will need to extend cable to the control room in the project substation to interconnect this internal communications system with CAISO and SDG&E.

## 4.0 OPERATIONS AND MAINTENANCE

## 4.1 OPERATION AND FACILITY MAINTENANCE NEEDS

Once the project has been constructed, the Ocotillo Express Wind Generation facility will be monitored and operated year-round by Pattern Energy and will have a permanent staff of 10-12 full-time technicians, who would normally be on-site daily. The computer control system for each turbine will perform self-diagnostic tests allowing a remote operator to ensure each turbine is functioning at peak performance. Routine maintenance activities consisting of visual inspections, oil changes, and gearbox lubrication will result in regular truck traffic on project access roads throughout the year. Project access roads will be graded as necessary to facilitate operations and maintenance.

Annual maintenance activities requiring the shut down of turbines will be coordinated to occur during periods of little or no wind to minimize the impact on the amount of overall energy generation. Annual maintenance procedures will consist of inspection of wind turbine components and fasteners.

## 4.2 MAINTENANCE ACTIVITIES, INCLUDING ROAD MAINTENANCE

All equipment used in the operation of this project will be maintained and inspected regularly by authorized and trained facility staff. A complete schedule will be established before the start of operations.

The internal access roads built and used during the construction phase will be maintained throughout commercial operations. During operations, all project access roads will be evaluated and graded as necessary to facilitate operations and maintenance. In addition to grading, the application of new gravel may be necessary to maintain road surfaces.

## 4.3 OPERATIONS WORKFORCE, EQUIPMENT, AND GROUND TRANSPORTATION

10 to 12 personnel will normally be onsite during maintenance activities. Five or six service vehicles will normally be utilized, as crews work and travel in pairs. These vehicles will be kept on site, and personnel will travel to the site in personal vehicles. Car pooling will be encouraged.

## **5.0 Environmental Considerations**

#### 5.1 PA/EIR/EIS SCHEDULE

| Activity                                                       | Due Date          |  |  |
|----------------------------------------------------------------|-------------------|--|--|
| Applicant's POD Approved by BLM, and                           | January 15, 2010  |  |  |
| BLM Selects/Approves Applicant's Environmental Contractor      |                   |  |  |
| BLM Publishes the Notice of Intent in the Federal Register for |                   |  |  |
| the Plan Amendment/EIS and Proposed Energy Project             | January 29, 2010  |  |  |
| BLM Conducts Formal Scoping Meetings                           | February 17, 2010 |  |  |
| Formal Scoping Period Ends                                     | March 1, 2010     |  |  |

| Preliminary Draft Plan Amendment/Draft Environmental       |                    |  |  |
|------------------------------------------------------------|--------------------|--|--|
| Impact Statement (Draft PA/DEIS) for Internal Staff Review | June 1, 2010       |  |  |
| Biological & Cultural Field Surveys Completed              | June 1, 2010       |  |  |
|                                                            | ·                  |  |  |
| Biological & Cultural Reports Completed                    | June 14, 2010      |  |  |
| BLM/EPA Publishes the Notice of Availability (NOA) in the  |                    |  |  |
| Federal Register for the Draft PA/DEIS *                   | July 2, 2010       |  |  |
| The 90-day Public Review and Comment Period Begins         | July 2, 2010       |  |  |
| BLM Submits BA to USFWS (Starts the 135-day Consultation   |                    |  |  |
| Process)                                                   | July 2, 2010       |  |  |
| Public Meetings for the Draft PA/DEIS                      | August 18, 2010    |  |  |
| 90-Day Public Review and Comment Period Ends **            | September 30, 2010 |  |  |
| USFWS Issues Biological Opinion                            | November 15, 2010  |  |  |
| Section 106 Consultation Completed                         | November 15, 2010  |  |  |
| Comment Analysis and Responses to Comments Drafted         | November 15, 2010  |  |  |
| Preliminary Proposed Plan Amendment/Final Environmental    |                    |  |  |
| Impact Statement (Proposed PA/FEIS) for Internal Staff     | November 30, 2010  |  |  |
| Review                                                     |                    |  |  |
| BLM/EPA Publishes the Notice of Availability (NOA) in the  |                    |  |  |
| Federal Register for the Proposed PA/FEIS *                | January 7, 2011    |  |  |
| 30-Day Protest Period for Proposed PA Begins               | January 7, 2011    |  |  |
| Protest Period for Proposed PA Ends ***                    | February 7, 2011   |  |  |
| BLM Releases the Record of Decision for PA and Energy      |                    |  |  |
| Project                                                    | April 20, 2011     |  |  |

## 5.2 GENERAL DESCRIPTION OF SITE CHARACTERISTICS AND POTENTIAL ENVIRONMENTAL ISSUES

Pending more detailed site investigations, environmental characteristics of the site can be inferred from existing information. Potential environmental issues potentially include, but would not necessarily be limited to:

- Local vegetation and native plant species
- Wildlife and Endangered or Special Status Species
- Cultural and paleontological resources
- Visual and noise, recreation
- Watershed and fire management
- Special Designations (Protected Areas)
- Local economic and social conditions
- Native American concerns
- Health and Safety
- Community Issues and Aviation

Many of these issue areas are discussed below.

#### **5.2.1 SPECIAL OR SENSITIVE SPECIES AND HABITATS**

The Ocotillo Express Wind project would be located near Ocotillo, Imperial County. The project would be located in the Colorado Desert bioregion. This area consists primarily of desert habitats including Sonoran creosote bush scrub, Sonoran desert mixed scrub, Sonoran west scrub, and Sonoran mixed woody and succulent scrub (CPUC, 2008). The wind project would be located immediately north of the in Peninsular Bighorn Sheep Designated Critical Habitat Unit 3 (USFWS, 2009).

The Colorado Desert is the western extension of the Sonoran desert, which covers southern Arizona and northwestern Mexico. Much of the Colorado Desert land lies below 1,000 feet in elevation. Mountain peaks rarely exceed 3,000 feet. Common habitats include sandy desert, scrub, palm oasis, and desert wash. Summers are hot and dry, and winters are cool and moist (CERES, 2009).

The Colorado Desert supports a diverse array of wildlife species including the Yuma antelope ground squirrels, white-winged doves, muskrats, southern mule deer, coyotes, bobcats, and raccoons. Rare animals include desert pupfish, FTHL, prairie falcon, Andrew's dune scarab beetle, Coachella Valley fringe-toed lizard, Le Conte's thrasher, black-tailed gnatcatcher, and California leaf-nosed bat. Rare plants include Orcutt's woody aster, Orocopia sage, foxtail cactus, Coachella Valley milk vetch, and crown of thorns (CERES, 2009).

Sensitive species that could be located in or adjacent to the project site include Peninsular Bighorn Sheep, flat-tailed horned lizard, barefoot banded gecko, and migratory birds and bats.

Peninsular Bighorn Sheep. On April 14, 2009, the USFWS revised the final critical habitat for the Peninsular bighorn sheep, excluding from designation approximately 460,487 acres of habitat in Riverside, San Diego, and Imperial counties identified in the 2001 designation (see 50 Fed. Reg. Part 17). This revision excluded the critical habitat that would have been located on the proposed site. Peninsular bighorn sheep live on steep, open slopes, canyons, and washes in hot and dry desert regions where the land is rough, rocky, and sparsely vegetated. Elevation ranges have been recorded between 300 and 4,000 feet where average annual precipitation is less than four inches and daily high temperatures average 104°F in the summer. Caves and other forms of shelter (e.g., rock outcrops) are used during inclement weather and for shade during the hotter months. Lambing areas are associated with ridge benches or canyon rims adjacent to steep slopes or escarpments. Alluvial fans are also used for breeding, feeding, and movement. Designated critical habitat is located from the San Jacinto Mountains south to the U.S.-Mexico border, generally along the eastern escarpment of the Peninsular Ranges that steeply descend into the Sonoran Desert along the Coachella Valley, Anza-Borrego Desert, and Salton Trough.

Flat-Tailed Horned Lizard. The FTHL has the most limited distribution of any horned lizard species in the U.S. It is found in the extreme southwestern corner of Arizona, the southeastern corner of California, and adjoining portions of Sonora and Baja California, Mexico. FTHLs occur entirely within the largest and most arid subdivision of the Sonoran Desert. Most records of this lizard come from the creosote-white bursage series of Sonoran Desert Scrub, although in California the species has been recorded in a wide range of habitats including sandy flats and hills, badlands, salt flats, and gravelly soils. Ants constitute approximately 97 percent of the

FTHL's diet; harvester ants (genera *Messor* and *Pogonomyrmex*) are far more important to this diet than smaller ant species. Water is obtained primarily from food; free-standing water is usually not available (Flat-Tailed Horned Lizard Interagency Coordinating Committee, 2003). Unlike other iguanid lizards that often flee when approached, the FTHL remains still or may bury itself in loose sand. This reluctance to move, along with its cryptic coloration and body-flattening habit, makes the FTHL very susceptible to mortality, especially from vehicles (Flat-Tailed Horned Lizard Interagency Coordinating Committee, 2003).

Barefoot Banded Gecko. In California, the State-listed threatened barefoot banded gecko inhabits the eastern edge of the Peninsular Ranges from Palms to Pines Highway (SR74) to the Baja California border. It occupies arid, rocky areas on flatlands and in canyons and thornscrub, especially where there are large boulders and rock outcrops and the vegetation is sparse (CaliforniaHerps.com, 2007). This species is known only from five localities in eastern San Diego County and western Imperial County. Anza- Borrego Desert State Park (ABDSP) affords protection for some gecko habitat (CDFG, 2006b). The natural history of this gecko is not well known; this secretive nocturnal animal hides by day in deep crevices. It is active in fairly cool ambient temperatures during periods of increased humidity, typically spring through fall. It hibernates through the winter (CaliforniaHerps.com, 2007).

Biological surveys will be conducted to identify any possible biological resources that would be impacted by the project. These surveys will help determine what species are present on the project site and to assess potential impacts and determine appropriate conservation and mitigation measures.

CTATE

| <u>COMMON NAME</u><br>BIRDS       | SCIENTIFIC NAME                         | FEDERAL STATUS     | <u>STATE</u><br><u>STATUS</u> |
|-----------------------------------|-----------------------------------------|--------------------|-------------------------------|
| California Black Rail             | Laterallus jamaicensis<br>conturniculus | Sp of Concern (C2) | Threatened                    |
| Yuma Clapper Rail                 | Rallus longirostris<br>yumanensis       | Endangered         | Threatened                    |
| Western Yellow Billed<br>Cuckoo   | Coccyzus americanus occidentalis        | None               | Endangered                    |
| Elf Owl                           | Micrathenewhitneyi                      | None               | Endangered                    |
| Gila Woodpecker                   | Melanerpes uropygialis                  | None               | Endangered                    |
| Gilded Northern<br>Flicker        | Colaptes auratus<br>chrysoides          | None               | Endangered                    |
| Willow Flycathcher                | Empidonax traillii                      | None               | Endangered                    |
| Arizona Bells Vireo               | Vireo bellii arizonae                   | None               | Endangered                    |
| <u>FISH</u><br>Colorado Squawfish | Ptychocheilus lucius                    | Endangered         | Endangered                    |

#### TABLE XX – Threatened, Endangered, Species of Concern

| Razorback Sucker                         | Xyrauchen texanus                                         | Endangered                            | Endangered         |
|------------------------------------------|-----------------------------------------------------------|---------------------------------------|--------------------|
| Desert Pupfish                           | Cyprinodon macularius                                     | Endangered                            | Endangered         |
|                                          |                                                           |                                       |                    |
| MAMMALS                                  |                                                           |                                       |                    |
| Peninsular Bighorn<br>Sheep              | Ovis canadensis<br>cremnobates                            | Proposed<br>Endangered                | Threatened         |
| <b>REPTILE</b>                           |                                                           |                                       |                    |
| Desert Tortose                           | Xerobates agassizii                                       | Threatened                            | Threatened         |
| Barefoot Banded<br>Gecko                 | Coleonyx switaki                                          | Sp of Concern (C2)                    | Threatened         |
| PLANTS                                   |                                                           |                                       |                    |
| Algodones Dunes<br>Sunflower             | Helianthus niveus ssp<br>tephrodes                        | Sp of Concern (C2)                    | Endangered         |
| Wiggins's Croton<br>Pierson's Milk-Vetch | Croton wigginsii<br>Astragalus magdalena<br>var peirsonii | Category 3C<br>Proposed<br>Endangered | Rare<br>Endangered |
|                                          |                                                           |                                       |                    |

#### 5.2.1.1.1 Potential Impacts

As stated in the BLM Programmatic EIS (2005), impacts to vegetation and wildlife during construction could occur from (1) erosion and runoff; (2) fugitive dust; (3) noise; (4) the introduction and spread of invasive vegetation; (4) modification, fragmentation, and reduction of habitat; (5) mortality of biota; (6) exposure to contaminants; and (7) interference with behavioral activities. Site clearing and grading, along with construction of access roads, towers, support buildings, utility and transmission corridors, and other ancillary facilities, could reduce, fragment, or dramatically alter existing habitat in the disturbed portions of the project area. Wildlife in surrounding habitats might also be affected if the construction activity (and associated noise) disturbs normal behaviors, such as feeding and reproduction.

The BLM has identified the following as types of impacts that could occur during the construction and operation of wind projects.

Construction impacts on vegetation. Construction activities may directly impact vegetation at wind project sites due to clearing and grading for towers and related infrastructure, utility corridors and access roads, assembly of turbines and towers, etc. Impacts would be of long and short duration and would be primarily localized to the immediate project area. Introduction of invasive vegetation would impact the project area and potentially impact the surrounding habitat. During construction, vegetation may be impacted through injury or mortality, fugitive dust, and exposure to contaminants or invasive species.

According to the BLM Wind PEIS, approximately five to ten percent of the entire project area would be potentially subject to direct injury or loss of vegetation due to permanent disturbance. Additional temporary impacts to vegetation could occur along transmission lines or at staging areas. Impacts to vegetation would also potentially occur due to compaction, loss of topsoil, and removal or reductions in seed banks.

Construction impacts on wildlife. Direct and indirect impacts to wildlife could occur during the construction of the wind project. Impacts to wildlife could include habitat reduction, alteration, and fragmentation, introduction of invasive species, injury or mortality, decrease of water quality due to erosion and runoff, fugitive dust, noise, and exposure to contaminants, as well as interference with behavioral activities. The location and timing of construction would potentially impact migration routes of some species.

Impacts to wildlife habitat include reduction, alteration, or fragmentation of habitat due to project related infrastructure. Existing habitat would be disturbed within the turbine footprints and support facilities, along new access roads, and within new utility right-of-way (ROW). The amount of habitat that would be subject to direct impact would be approximately five to ten percent of the project site (BLM, 2005).

Additional impacts to wildlife could occur through direct injury or mortality, if wildlife is not sufficiently mobile to avoid construction operations, or if the wildlife is using burrows or defending nest sites.

Construction impacts on wetland and aquatic biota. Wind energy development typically occurs on ridges and other elevated land where wetlands and surface bodies are not likely to occur; however, access roads and transmission lines may cross lands where these features may be more common. This may result in impacts to wetland and aquatic biota during construction. Desert washes may be impacted.

Construction impacts on Threatened and Endangered Species. Construction activities could impact threatened, endangered or sensitive species through injury or mortality, habitat disturbance, introduction of invasive species, erosion or runoff, fugitive dust, noise, exposure to contaminants, and interference with behavioral activities. Because of the regulatory requirements of the Endangered Species Act (ESA) and various state laws and regulations, and the requirements specified in BLM Manual 6840 – Special Status Species Management (BLM 12/12/2008) and other resource-specific regulations and guidelines, appropriate survey, avoidance, and mitigation measures would be identified and implemented prior to any construction activities to avoid impacting any sensitive species or the habitats on which they rely.

Operational Effects on Wildlife. Wildlife may be affected by wind energy project operations through electrocution from transmission lines; noise; the presence of, or collision with, turbines, meteorological towers, and transmission lines; site maintenance activities; exposure to contaminants; disturbance associated with activities of the wind energy project workforce; interference with migratory behavior; and increased potential for fire. Wildlife may be affected by human activities that are not directly associated with the wind energy project or its workforce but instead are associated with the potentially increased access to BLM-administered lands that previously received little use. The construction of new access roads or improvements to old

access roads may lead to increased human access into the area. Potential impacts associated with increased access include the disturbance of wildlife, including an increase in legal and illegal take, an increase in invasive vegetation, and an increase in the incidence of fires.

Collision with turbines meteorological towers, and transmission lines. Operation of a wind energy project is expected to result in mortality of birds due to collision with wind turbine blades. Recent studies have shown that taller tower heights are likely to reduce raptor mortality due to an increase in ground-to-rotor clearance, especially for red-tailed hawks, golden eagles and American kestrels that use spaces closer to the ground for hunting prey. Ground disturbance around wind turbines (roads and work pads) increases the vertical/horizontal edge near turbines, which also may increase prey densities and raptor use. Also, ground disturbance that creates rock piles creates habitat for small mammals and reptiles that could attract raptors to the turbine sites. Small mammals and reptiles may also burrow near the turbine bases where soil has been disturbed. Fatalities among of raptors are of special concern because of their generally low numbers and protected status. Depending on the species and its population size, the number of fatalities may result in population-level effects to the affected raptors. To date (2005), no studies have shown population-level effects in raptor populations associated with wind energy projects (BLM, 2005).

Operation of component wind energy project is expected to result in mortality of bats due to collision with wind turbine blades. Studies show that bat mortality from collision with wind turbines is highest during the late summer and fall migration season. Preliminary data from the Buffalo Ridge WRA suggest that while a number of bats may be susceptible to turbine collisions, the observed mortality is not sufficient to cause population declines in the vicinity of the facility (BLM, 2005). If the species killed were uncommon, impacts could result in population-level effects, while impacts from killing small numbers of common bat species would not be expected to result in population-level effects.

#### **5.2.2 Special Land Use Designations**

The Ocotillo Express Wind project would be in an area governed by the California Desert Conservation Area Plan. The site is located immediately north of the Jacumba Wilderness, approximately two miles east of the Yuha Area of Critical Environmental Concern, approximately 1.5 miles southwest of the Plaster City Open Area, approximately one mile south of the Coyote Mountains Wilderness, and adjacent to Anza-Borrego Desert State Park and the Jacumba Mountain Wilderness. The Ocotillo Express Wind project would be potentially visible from these special land use areas.

California Desert Conservation Area Plan. The 25-million-acre CDCA is a special planning area administered by the BLM that contains over 12 million acres of public lands within the California Desert, which includes the Mojave, the Sonoran, and a small portion of the Great Basin Deserts. The goal of the CDCA Plan is to provide for economic, educational, scientific, and recreational uses of public lands and resources in the CDCA in a manner that enhances use without diminishing the environmental, cultural, and aesthetic values of the desert.

California Desert District. The mission of the California Desert District (CDD) of the BLM is to protect the natural, historic, recreational and economic riches of the California Desert for

generations to come. In 1976, the United States Congress created the California CDCA, which covers nearly one quarter of the State. As one of the government's primary authorities for the management of public lands, the BLM - through the CDD - acts as steward for 10.4 million acres of this 26 million acre preserve. In an effort to provide the most benefit to the most people, while preserving this rugged and awe inspiring landscape, the CDD developed a balanced, multiple-use plan to guide the management of this vast expanse of land. The plan, completed in 1980 with the help of the public, divides the desert into multiple-use classes. These classes were created in order to define areas in critical need of protection, while allowing for the use and development of less-vital parts of the desert.

Jacumba Wilderness. The Jacumba Wilderness is a 31,237-acre federal wilderness area administered by BLM. The Jacumba Mountains sit on the eastern flank of southernCalifornia's coastal peninsular ranges, extending to the international border. The Jacumba's are a broad range, made up of ridges and intervening valleys (BLM, 2009b). The Davies Valley is the largest valley in the wilderness area and is used for hiking, equestrian use, photography, and nature study. A staging area for hiking and riding into Davies Valley is located at the end of Clark Road, south of Ocotillo on State Highway 98.

Yuha Basin Area of Critical Environmental Concern. The Yuha Basin ACEC is managed by the BLM and is designated as an ACEC because of its significant natural, cultural and historic resources (e.g., FTHL populations, Yuha well, Yuha geoglyph, and Juan Bautista de Anza National Historic Trail) (BLM, 2004). Camping is permitted only within six BLM-designated primitive campgrounds located south of the Proposed Project and Interstate 8 in the Yuha Desert. BLM primitive campgrounds are widely dispersed, and undeveloped (i.e., without toilets, electricity, or water). These BLM primitive campgrounds are located along the Juan Bautista de Anza National Historic Trail (BLM, 2004).

Plaster City Off Highway Vehicle Open Area. This area provides 41,000 acres of open desert terrain for OHV recreationists and includes two staging areas, Plaster City East and Plaster City West, that are popular primitive camping and day use areas (BLM, 2009c). Vehicles and camping are permitted anywhere in the area.

Coyote Mountain Wilderness. The Coyote Mountains make up 40 percent of this wilderness. It encompasses approximately 18,000 acres. Part of the Carrizo Badlands lies within the northern portion of the wilderness, their narrow and twisting gullies giving the landscape a harsh, forbidding appearance. A group of unusual sandstone rock formations, believed to be six million years old, adds to the character of this wilderness. Fossil Canyon ACEC is within the Coyote Mountains Wilderness (BLM, 2009c).

Anza-Borrego Desert State Park and Jacumba Mountain Wilderness. Anza-Borrego Desert State Park is the largest state park in California. Five-hundred miles of dirt roads, 12 wilderness areas and miles of hiking trails are found in this part of the California Desert.

## 5.2.1.1.2 Potential Impacts to BLM-Administered Land.

Public lands -- unless otherwise classified, segregated, or withdrawn -- are available at the BLM's discretion for ROW authorization for wind energy development under the FLMPA (BLM, 2005). The *California Desert Conservation Area Plan, as Amended* (BLM 1999),

identifies wind energy development as an authorized use of public lands, consistent with the Plan and NEPA. Consequently, public lands located in the CDCA are not restricted from wind energy development.

Site monitoring and testing associated with the meteorological towers and minimumspecification access roads (if required) would generally result in temporary, localized impacts to existing land uses. Meteorological data would be collected for 1 to 3 years and would require the installation of meteorological towers to characterize the wind regime at a potential wind resource area (WRA). Since a meteorological tower would occupy only a few square feet, only a negligible impact to most existing land uses would be expected. However, the presence of the towers, including guy-wires and possible access roads, may impact more remote recreational experiences.

According to the BLM Wind PEIS, construction activities could result in temporary impacts to existing land uses. For example, construction activities such as blasting could impact other uses of BLM land.

Permanent land use impacts are based on the amount of land that would be displaced by a proposed project and by the compatibility of the proposed use with existing uses. Permanently converted acreage would usually involve only a small portion of that available within a project area. Given the overall footprints of wind turbine towers and ancillary structures, the amount of acreage required for most wind energy development projects should be a small fraction of the grant area (BLM, 2005). Generally, wind turbines need to be separated by a distance equivalent to at least several tower heights in order to allow wind strength to reform and for the turbulence created by one rotor not to harm another turbine downwind. Therefore, only a small percentage of land area is taken out of use by the turbines, access roads, and other associated infrastructure. Depending on the location, size, and design of a wind energy project, wind development is compatible with a wide variety of land uses and generally would not preclude recreational, wildlife habitat conservation, military, livestock grazing, oil and gas leasing, or other activities that currently occur within the proposed project area (BLM, 2005). Development of the wind farm and security measures may impact the off-highway vehicular (OHV) traffic and associated recreational experiences due to rerouting of roads, closures of existing travel routes, creation of strong visual contrasts, and implementation of site security measures.

Overall, establishment of a wind energy project and its ancillary structures (e.g., transmission lines and access road) would modify the existing land cover (BLM, 2005). Indirect land use impacts would not be expected, because it is anticipated that a wind energy project would not substantially induce or reduce regional growth to the extent that it would change off-site land uses or use of off-site resource-based recreation areas.

Upon decommissioning, most land use impacts from facility construction and operation would be reversible. No permanent land use impacts would be expected from decommissioning (BLM, 2005). The BLM could decide to continue the use of, and maintain, access roads.

#### 5.1.3 CULTURAL AND HISTORIC RESOURCE SITES AND VALUES

The Ocotillo Express Wind project would be located in the Colorado Desert in Imperial County. The following is a brief description of the cultural and historic setting of the Colorado Desert taken from the Sunrise Powerlink Project Final Environmental Impact Report/Environmental Impact Statement (EIR/EIS) (2008). According to the Sunrise Powerlink Project EIR/EIS, current research of precontact occupation in San Diego County and western Imperial County recognizes the existence of at least two major cultural traditions, discussed here as Early Period/Archaic and Late Period. Within the region, the Early Period/Archaic spans from roughly 9,500 to 1,300 years ago, and the Late Period begins approximately 1,300 years ago and ends with historic contact. The Historic Period covers the time from Spanish contact to the present.

#### 5.2.1.2 ARCHAIC PERIOD

The Archaic period in western Imperial County is not strongly represented. The Salton Trough is unique in having contained a large freshwater lake that filled, dried out, and filled numerous times in prehistory in response to the western diversion of the Colorado River into the Salton Trough. While the general timing of several of these lacustral intervals is fairly well established for the late Holocene (Waters, 1983), data for earlier periods is currently lacking. The Archaic period is represented in the western Colorado Desert by occasional surface finds of isolated dart points, a cairn burial from the Yuha area dated between 1,650 and 3,850 years B.P. (Taylor et al., 1985), stratified deposits spanning the Archaic and Late Periods at Indian Hill Rockshelter in Anza-Borrego Desert State Park (Wilke and McDonald, 1989; McDonald, 1992), and by an unusually high concentration of Archaic points and crescentics at the Salton Sea Test Base (Apple et al., 1997).

#### 5.2.1.3 LATE PERIOD

It is not possible to understand the Late Period of the western Colorado Desert and eastern slopes of the Peninsular Range without reference to Lake Cahuilla. Combining radiocarbon evidence from core samples and archaeological sites with ethnohistoric information, Waters (1983) determined that the Salton Trough experienced four major lacustrine episodes during the period between approximately 400 and 1,200 years ago. A fifth partial refilling has since been proposed based on faunal evidence recovered from the Dunaway Road site in southeastern Imperial County. Numerous communities exploited many resources along the Lake Cahuilla shoreline, although there is debate regarding it the occupations were year-round residential bases or seasonal, temporary camps. Variability and flexibility in the face of changing environmental circumstances seem to have been the main principles governing Late Period adaptation throughout the area (Schaefer, 1994). Following desiccation of Lake Cahuilla, major out-migrations to other areas of interior California would have occurred (Wilke, 1978).

The extensive system of trails that crisscross the desert attests to the importance of long-range resource extraction and trade during the Late Period. Extensive travel and trade between the Pacific coast and well beyond the California-Arizona and California-Mexico borders are well documented in ethnohistoric accounts and in the archaeological record.

## 5.2.1.4 HISTORICAL BACKGROUND

The history of the region is generally divided into the Spanish (1769-1821), Mexican (1821-1846), and American (after 1846) periods. The Spanish Period began with the establishment of a mission and presidio on a hill overlooking San Diego Bay in July 1769. The Spaniards introduced European crops, cattle, and other livestock. Their goal was to convert the Native Americans to Christianity and teach them to be agriculturists. The Mexican Period began in 1821 when Mexico achieved independence from Spain. During the 1820s, a small village began to form at the base of Presidio Hill that became the Pueblo of San Diego (present-day Old Town). In 1846, San Diego was occupied by American troops and officially became part of the United States when the Treaty of Guadalupe Hidalgo formalized the transfer of territory from Mexico to the United States in 1848.

#### 5.2.1.5 Development of Western Imperial Valley

In May 1901, the California Development Company, under the direction of engineer George M. Chaffey, succeeded in bringing water into the Imperial Valley from the Colorado River. Within one year, 400 miles of ditches had been excavated to irrigate more than 10,000 acres of fertile land that up until that time had remained barren desert for lack of water. The area prospered quickly and towns formed including Imperial City, Calexico, Mexicali, Holtville, Seeley, Brawley, and El Centro (Pourade, 1965). In 1907, Imperial County was formed out of the eastern portion of San Diego County with an estimated population of 6,940. El Centro was the county seat (Pourade, 1965).

Transportation. Development brought the need for better transportation routes. Between 1912 and 1915, three major projects: the completion of an automobile road down Mountain Springs Grade; construction of the Plank Road across the Algodones Sand Dunes; and, the building of the Ocean to Ocean Highway Bridge that crosses the Colorado River at Yuma, gave Imperial Valley major automobile connections with the east and west coasts. This route was eventually paved in 1924 as Highway 80 (Wray, 2004). Between 1917 and 1925, the Julian-Kane Springs Road, which closely follows current Highway 78, was completed between Julian and Kane Springs at the junction of the Brawley to Indio Road, now Highway 86. A small service station was located at Kane Springs (Wray, 2004). The Imperial Highway was completed through Sweeney Pass in the 1930s. Modern San Diego County Highway S-2 now follows this route. The town of Ocotillo developed at the junction of the Imperial Highway and Highway 80 (Wray, 2004). In addition, during the 1920s, Plaster City was established along Highway 80 to process gypsum ore from the company's mine at Split Mountain. A railroad carries the ore from the mine to the plant (Wray, 2004).

#### 5.2.1.5.1 Potential Impacts

A Class III cultural resource inventory survey is being completed. As necessary, project components will be relocated to avoid direct impacts to any eligible sites. Information from a Class I record search will be available when complete.

Site Monitoring and Testing. Potential impacts to cultural resources could occur during site monitoring and testing; however, the causes of possible impacts would be limited to minor ground-disturbing activities and activities that result in the potential for unauthorized collection

of artifacts and acts of vandalism (BLM, 2005). Typically, excavation activities and road construction to provide access to the project area would be very limited. Some clearing or grading might be needed in order to install monitoring towers and equipment enclosures. If more extensive excavation or road construction was needed during this phase, more extensive impacts would be possible

Site Construction. Ground disturbance during project construction could impact cultural resources by damaging and displacing artifacts, resulting in loss of significant information. Increased erosion caused by construction could impact cultural resources by dispersing artifacts and destroying archeological deposits.Project construction would potentially open up new areas of BLM-Administered land to humans which increases the potential for adverse impacts caused by looting, vandalism, and inadvertent destruction to resources (BLM, 2005). Visual impacts to cultural resources are also likely during project construction.

Site Operation. As during construction, project operation would potentially open up new areas of BLM-Administered land to humans which increases the potential for adverse impacts caused by looting, vandalism, and inadvertent destruction to resources (BLM, 2005). Visual impacts could occur during operation, as wind turbines could potentially be perceived as an intrusion on sacred or historical landscapes.

Site Decommissioning. Few impacts to cultural resources would be expected during site decommissioning. Ground disturbance during decommissioning would be confined primarily to areas that were originally disturbed during construction. Most cultural resources are nonrenewable and would either have been removed professionally prior to construction or would have been already disturbed or destroyed by prior activities. Should access roads remain, the potential for looting and vandalism would also remain (BLM, 2005)

## 5.1.4 NATIVE AMERICAN TRIBAL CONCERNS

Pursuant to section 106 of the National Historic Preservation Act, the BLM would initiate Native American consultation. The BLM, El Centro Field Office would conduct government to government Native American consultation.

According to the BLM Wind PEIS, the BLM should consult with Native American governments early in the planning process to identify issues and areas of concern regarding the proposed wind energy development. Consultation is required under the National Historic Preservation Act of 1966, as Amended and consultation is necessary to establish whether the project is likely to disturb properties of traditional religious or cultural importance. To comply with the American Indian Religious Freedom Act, the BLM must consider the views of American Indian religious practitioners regarding sacred sites and must seek ways to avoid or minimize disturbance to traditional religious places or disruption of traditional religious practices.

## 5.1.5 SPECIAL AREAS, RECREATION AND OHV CONFLICTS

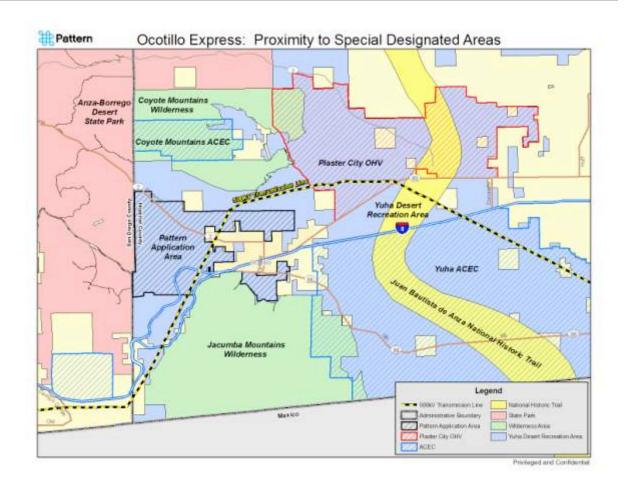
The Ocotillo Express Wind project site is located in the Yuha Desert Recreation Area, and is adjacent to a number of points of interest. As stated above, the project site would be adjacent to a variety of recreational opportunities. The Jacumba Wilderness offers camping, hiking, equestrian

and unique geologic formations. The Plaster City Open Area provides a variety of terrain for offhighway vehicles. Additional open routes cross the project site; the wind turbines would be sited to avoid the open roads.

The project area would be visible from the Yuha Desert ACEC, Yuha Geoglyphs, Plaster City ORV Open Area, Coyote Mountain Wilderness, Juan Bautista de Anza National Historic Trail, and the Jacumba Wilderness Area.

5.1.5.1Special Designations

The NEPA analysis will determing the degree is significance of impacts to the existing tow Wilderness and the Historic Trail Designations.


#### 5.1.5.2 Recreation

Ocotillo Express will consult with the BLM to determine impacts o the proposed project area to the recreation outcomes and benefits. BLM will identify what it will do to provide management, marketing, monitoring, and administrative actions to meet recreation demands for this area as a result of the proposed project changing the setting character of the area.

#### 5.1.5.30HV

The applicant will work with BLM staff, interested public, organizations, and agencies to develop a travel management plan for the project area to prvode systematic acces across and within the project area to facilitate OHV and other public traffic.

Figure XX Special Designated Areas



#### 5.2.1.5.2 Potential Impacts

Impacts to recreational resources include noise impacts, dust or air quality impacts, and/or visual impacts (BLM, 2005). The potential for impacts increases if the project is located in an area of high-density, concentrated, and developed recreation or if the visual impact is to a remote setting or landscape.

Noise, dust, traffic and the presence of construction crews could temporarily impact the character of nearby recreational resources. People engaged in hiking, camping, birding, and hunting would be affected the most by construction activities. Some campsites may experience increased use by transient workers who seek temporary accommodations during project construction.

Operation of the wind project could improved accessibility to the area and as such, could increase recreational opportunities; although at the same time, this could alter the experience for people wanting a backcountry setting (BLM, 2005). However, development of a wind energy project could modify the Recreation Opportunity Spectrum class within which the proposed project would be located. Most long-term effects would relate to visual disturbances.

## **5.1.6** NOISE

Site-specific data on outdoor sound levels in the project area are not available. Varying noise levels occur in the project area. Rural communities or unpopulated lands are the quietest, but noise can be sporadically elevated in localized areas where influenced by on-road traffic or aircraft. Natural noise levels absent human activity are generally low. Unpopulated natural areas are expected to be as low as 35 to 50 dBA, and ambient levels tend to be below 50 dBA in open areas. Part of the project site would be adjacent to I-8 where noise levels are the highest (over 80 dBA). Parallel to the existing 500 kV Southwest Powerlink transmission line, corona noise can be heard as a crackling or hissing sound at levels of approximately 50 dBA.

Noise-Sensitive Receptors. Residences are near the project in Ocotillo. Non-motorized recreational users would also be considered as noise-sensitive receptors.

## 5.2.1.5.3 Potential Impacts

Site testing. Most activities associated with site monitoring and testing would generate relatively low levels of noise. Potential short-term sources of noise at the beginning or end of this phase could include the use of a grader or bulldozer [about 85 dB(A)] if an access road was needed and there was traffic caused by heavy-duty or medium-duty trucks used to transport the towers to and from the site. Light-duty pickup trucks would potentially be used periodically for meteorological data collection and instrument maintenance during the course of the monitoring and testing phase. All these activities would be expected to occur during daytime hours when noise is tolerated more than at night, because of the masking effect of background noise. Accordingly, potential impacts of site monitoring and testing activities on ambient noise would be expected to be temporary and intermittent in nature (BLM, 2005).

Construction. Average noise levels for typical construction equipment range from 74 dB(A) for a roller, to 85 dB(A) for a bulldozer, to 101 dB(A) at a pile driver (impact) (BLM, 2005). In general, the dominant noise source from most construction equipment is the diesel engine, which is continuously operating around a fixed location or with limited movement. According to BLM calculation, it is estimated that with the two noisiest pieces of equipment operating simultaneously at peak load, noise levels would exceed the EPA guideline for residential Ldn noise [55 dB(A)] for a distance of about 1,640 ft (500 m) (EPA 1974). As sensitive receptors occur within 1,640 ft of the project site, there is potential for noise impacts during construction of the project.

Noise could be generated during construction from vehicular traffic including hauling materials, movement of heavy equipment, and commuter or visitor traffic. Noise levels associated with traffic would increase and decrease rapidly and would be greatest at the highest number of peak-hour trips and total heavy-duty truck traffic.

Additional noise impacts could occur should blasting be required for wind turbine foundations. Blasting would create a compressional wave in the air (air blast overpressure), the audible portion of which would be manifested as noise (BLM, 2005).

Operation. During operation, noise sources would include mechanical and aerodynamic noise; transformer and switchgear noise from substations; corona noise from transmission lines;

vehicular traffic noise, including commuter and visitor and material delivery; and noise from an operation and maintenance (O&M) facility.

Wind Turbine Noise. Aerodynamic noise from wind turbines originates mainly from the flow of air over and past the blades and generally increases with tip speed. The aerodynamic noise has a broadband character, often described as a "swishing" or "whooshing" sound, and is typically the dominant part of wind turbine noise today (BLM, 2005). The noise caused by this process is unavoidable. Although aerodynamic noise mostly has a broadband character, airfoil-related noise can also create a tonal component and there can be both impulsive and low-frequency components.

Impulsive noise and low-frequency noise are primarily associated with older-model downwind turbines, the blades of which are on the downwind side of the tower; these types of noise are caused by the interaction of the blades with disturbed air flow around the tower. Impulsive noise is characterized by short acoustic impulses or thumping sounds that vary in amplitude (level) as a function of time. Low-frequency noise is a more steady sound in the range of 20 to 100 Hz. These types of noise can be avoided, however, with appropriate engineering design (BLM, 2005).

There are many wind turbine designs. In general, upwind turbines are less noisy than downwind turbines and their lower rotational speed and pitch control results in lower noise generation (BLM, 2005). A variable speed wind turbine generates relatively lower noise emissions than a fixed speed turbine. A large variable speed wind turbine operates at slower speeds in low winds, resulting in much quieter operation in low winds than a comparable fixed speed wind turbine. As wind speed increases, the wind itself masks the increasing turbine noise.

To determine the potential noise impacts at the nearest residences from wind turbine operations, sound level data would be needed. Whether the turbine noise is intrusive or not depends not only on its distribution of amplitude and frequency but also on the background noise, which varies with the level of human and animal activities and meteorological conditions (primarily wind speed).

Substation Noise. Two sources of noise are associated with substations, transformer noise and switchgear noise (BLM, 2005). A transformer produces a constant low-frequency humming noise primarily because of the vibration of its core. Current transformer design trends have shown decreases in noise levels. The cooling fans and oil pumps at large transformers produce broadband noise only when additional cooling is required; in general, this noise is less noticeable than the tonal noise. Switchgear noise is generated by the operation of circuit breakers used to break high-voltage connections at 132 kV and above. An arc formed between the separating contacts has to be "blown out" using a blast of high-pressure gas. The resultant noise is impulsive in character (i.e., loud and of very short duration). The industry is moving toward the use of more modern circuit breakers that use a dielectric gas to extinguish the arc and generate significantly less noise.

Corona Noise. Potential transmission line noise can result from corona discharge, which is the electrical breakdown of air into charged particles. Corona noise is composed of broadband noise, characterized as a crackling or hissing noise, and pure tones, characterized as a humming noise

of about 120 Hz. Corona noise is primarily affected by weather and, to a lesser degree, by altitude and temperature. It is created during all types of weather when air ionizes near isolated irregularities (e.g., nicks, scrapes, and insects) on the conductor surface of operating transmission lines. Modern transmission lines are designed, constructed, and maintained so that during dry conditions the line will generate a minimum of corona-related noise. In wet conditions, however, water drops collecting on the lines provide favorable conditions for corona discharges. Occasional corona humming noise at 120 Hz and higher is easily identified and, therefore, may become the target of complaints (BLM, 2005).

Noise related to Maintenance Activities. Regular maintenance activities would include periodic site visits to wind turbines, communication cables, transmission lines, substations, and auxiliary structures. These activities would involve light- or medium-duty vehicle traffic with relatively low noise levels. Infrequent but noisy activities would be anticipated, such as road maintenance work with heavy equipment, or repair or replacement of old or inoperative wind turbines or auxiliary equipment.

#### 5.1.7 PALEONTOLOGICAL RESOURCES

Portion of the Ocotillo Express Wind site is underlain by the following geologic units:

- Quaternary alluvium. Quaternary alluvium consists of partly dissected, mostly unconsolidated, poorly sorted sand, silt, clay, and gravel located at the margins of canyons and within valley floors. "Younger" alluvium is Holocene (10,000 years ago to Recent) in age and "Older alluvium" is Pleistocene (1.8 million years ago to 10,000 years ago) in age. Fossil localities in older alluvium deposits throughout southern California have yielded terrestrial vertebrates such as mammoths, mastodons, ground sloths, dire wolves, short-faced bears, saber-toothed cats, horses, camels, and bison (Scott, 2006). Younger alluvium is determined to have a low potential for paleontological resources but is often underlain by older alluvium, which is determined to have a high potential for paleontological resources.
- Split Mountain Formation. The Split Mountain Formation, deposited during the late Miocene to early Pliocene (3 to 7 million years ago) consists of four members: a lower boulder and cobble fanglomerate (interpreted as a landslide) overlain by the Fish Creek Gypsum, which is in turn overlain by a marine sandstone and shale. The uppermost member consists of a massive gray fanglomerate that is also interpreted to be a deposited as a landslide event. The two fanglomerate units have not yielded fossils; however, the marine sandstone and shale as well as the Fish Creek Gypsum have yielded microfossils. The Split Mountain Formation is determined to have a moderate paleontological resources potential.
- Alverson Volcanics. Alverson Volcanics include an upper unit of volcanic flows and a lower unit consisting of a sequence of conglomerates, sandstones, and mudstones interbedded with lava flows. The sedimentary deposits within this geologic unit have yielded fossilized algae, pollen, petrified wood, mollusks, and one occurrence of a vertebrate bone fragment. The Alverson Volcanics are assigned a moderate paleontological resource potential.

Other geologic units may also be present (CPUC 2008).

## 5.2.1.5.4 Potential Impacts

Impacts to paleontological resources would potentially occur during ground disturbing activities. If there is a strong potential for fossil remains to be present in the project area, a survey would be required (BLM, 2005).

Site Monitoring and Testing. Ground disturbing activities would occur during the site monitoring and testing, including excavation and some road construction. Some clearing and grading may be required for installing monitoring towers and equipment enclosures. Because the monitoring and testing activities would affect small, localized areas the likelihood of an impact is reduced (BLM, 2005). Additional impacts could occur if the access roads were used to reach areas previously inaccessible to the public.

Site Construction. Site construction has the potential to impact paleontological impacts because it would require excavation, grading, and vegetation removal and potential blasting. Grading and blasting would directly impact paleontological resources if they were present. Grading for access roads, lay-down areas, staging areas for cranes, and other infrastructure would also create potential impacts. BLM identifies human removal of fossils rather than reporting them as one of the greatest threats to paleontological resources. Development of a wind project would bring a large number of workers into contact with areas that had been previously undisturbed. With mitigation, the fossils contained in sensitive geologic units, as well as the paleontological data they could provide, could be properly salvaged and documented.

Site Operation and Decommissioning. Few impacts to paleontological resources would be expected during operation and decommissioning of the wind project. Most activities during operation and decommissioning would not result in new ground disturbance, minimizing disturbance to new fossils. The improved access to the site would continue to present possible impacts due to removal of fossils by amateurs.

#### 5.1.8 VISUAL RESOURCE MANAGEMENT DESIGNATIONS

Public lands administered by the BLM have a variety of visual values. These lands are subject to visual resource management objectives as developed using the BLM Visual Resource Management (VRM) System (BLM, 1984, 1986a, 1986b) and presented in the Resource Management Plan for a given unit. The BLM system identifies four VRM Classes (I through IV) with specific management prescriptions for each class. The system is based on an assessment of scenic quality, viewer sensitivity and viewing distance zones.

#### 5.2.1.5.5 Scenic Quality

Scenic Quality is a measure of the overall impression or appeal of an area created by the physical features of the landscape, such as natural features (landforms, vegetation, water, color, adjacent scenery and scarcity), and built features (roads, buildings, railroads, agricultural patterns, and utility lines). These features create the distinguishable form, line, color, and texture of the landscape composition that can be judged for scenic quality using criteria such as distinctiveness, contrast, variety, harmony, and balance. The VRM scenic quality rating components are evaluated to arrive at one of three scenic quality ratings (A, B, or C) for a given landscape. Each landscape component is scored and a score of 19 or more results in a Class A scenic quality rating.

A score of 12 to 18 results in a Class B scenic quality rating, while a score of 11 or less results in a Class C scenic quality rating. The three scenic quality classes can be described as follows:

- Scenic Quality Class A Landscapes that combine the most outstanding characteristics of the region.
- Scenic Quality Class B Landscapes that exhibit a combination of outstanding and common features.
- Scenic Quality Class C Landscapes that have features that are common to the region.

#### 5.2.1.5.6 Viewer Sensitivity

Viewer Sensitivity is a factor used to represent the value of the visual landscape to the viewing public, including the extent to which the landscape is viewed. For example, a landscape may have high scenic qualities but be remotely located and, therefore, seldom viewed. Sensitivity considers such factors as visual access (including duration and frequency of view), type and amount of use, public interest, adjacent land uses, and whether the landscape is part of a special area (e.g., California Desert Conservation Area or Area of Critical Environmental Concern). The three levels of viewer sensitivity can generally be defined as follows:

- High Sensitivity. Areas that are either designated for scenic resources protection, or receive a high degree of use (includes areas visible from roads and highways receiving more than 45,000 visits [vehicles] per year). Typically within the foreground/middleground viewing distance.
- Medium Sensitivity. Areas lacking specific, or designated, scenic resources protection, but are located in sufficiently close proximity to be within the viewshed of the protected area. Includes areas that are visible from roads and highways receiving 5,000 to 45,000 visits (vehicles) per year. Typically within the background viewing distance.
- Low Sensitivity. Areas that are remote from populated areas, major roadways, and protected areas or are severely degraded visually. Includes areas that are visible from roads and highways receiving less than 5,000 visits (vehicles) per year.

The project site would be located on BLM-administered lands located within the California Desert Conservation Area (CDCA). Because of the public importance imparted by this designation, all BLM lands within the CDCA that were inventoried for this project have been assigned a High rating for Viewer Sensitivity.

#### 5.2.1.5.7 Viewing Distance Zones

Landscapes are generally subdivided into three distance zones based on relative visibility from travel routes or observation points. The foreground/middleground (f/m) zone includes areas that are less than three to five miles from the viewing location. The foreground/middleground zone defines the area in which landscape details transition from readily perceived, to outlines and patterns. The background (b) zone is generally greater than 5, but less than 15, miles from the viewing location. The background zone includes areas where landforms are the most dominant element in the landscape, and color and texture become subordinate. In order to be included within this distance zone, vegetation should be visible at least as patterns of light and dark. The seldom-seen zone (s/s) includes areas that are usually hidden from view as a result of topographic or vegetative screening or atmospheric conditions. In some cases, atmospheric and lighting conditions can reduce visibility and shorten the distances normally covered by each zone (BLM, 1986b).

## 5.2.1.5.8 Visual Resource Management Classes

The VRM Class for a given area is typically arrived at through the use of a classification matrix. By comparing the scenic quality, visual sensitivity, and distance zone, the specific VRM class can be determined. The exception to this process is the Class I designation, which is placed on special areas where management activities are restricted (e.g., wilderness areas).

VRM Classes have been established in existing Resource Management Plans for the BLM lands in San Diego County. However, VRM classifications have not been established in Resource Management Plans for BLM lands in the vicinity of the project in Imperial County. For those lands, Interim VRM Classes were developed for the Sunrise Powerlink Project EIR/EIS using the methodology set forth below. These Interim VRM Classes will become final once adopted in an amendment to the Land Management Plan.

The objectives of each VRM classification as stated in the BLM VRM *Visual Resource Inventory Manual* are as follows:

- VRM Class I. The objective is to preserve the existing character of the landscape. This class provides for natural ecological changes; however, it does not preclude very limited management activity. The level of change to the characteristic landscape should be very low and must not attract attention.
- VRM Class II. The objective is to retain the existing character of the landscape. The level of change to the characteristic landscape should be low. Management activities may be seen, but should not attract the attention of the casual observer. Any changes must repeat the basic elements of form, line, color, and texture found in the predominant natural features of the characteristic landscape.
- VRM Class III. The objective is to partially retain the existing character of the landscape. The level of change to the characteristic landscape should be moderate or lower. Management activities may attract attention but should not dominate the view of the casual observer. Changes should repeat the basic elements found in the predominant natural features of the characteristic landscape.
- VRM Class IV. The objective is to provide for management activities which require major modification of the existing character of the landscape. The level of change to the characteristic landscape can be high. These management activities may dominate the view and be the major focus of viewer attention. However, every attempt should be made to minimize the impact of these activities through careful location, minimal disturbance, and repeating the basic elements.

As previously stated, all lands within the California Desert Conservation Area are assigned a High Visual Sensitivity Level. All of the lands inventoried for the Sunrise Powerlink Project are also within the foreground/middleground (f/m) viewing distance zone of one or more public viewing points or access roads. As a result, the Interim VRM Classes are tied directly to the Scenic Quality Classes. Areas with Class B Scenic Quality result in an Interim VRM Class II. Areas with Class C Scenic Quality result in an Interim VRM Class III. As can be seen in Figure D.3-1A from Section D. (Visual Resources) for the Sunrise Powerlink Project EIR/EIS, the Ocotillo Express Wind project would be located on an area with an Interim VRM Class III. Land located south of the project, the Jacumba Wilderness, and land located north of the project, the Coyote Mountain Wilderness, have Interim VRM Class I (CPUC, 2008).

Western Imperial County is predominantly characterized by rough, rocky mountains with jagged ridgelines bordering broad, desert basins and alluvial slopes. Vegetation in this region ranges from sparse, low-growing grasses and shrubs such as creosote in the wide, flat desert basins to

completely absent in areas of high four-wheel drive (4WD) recreational use. Project viewing opportunities are numerous and include Interstate 8 (I-8), State Routes (SR) 2 and 98, local roads, the many 4WD access roads on public lands, and recreational and visitor areas, and from the town of Ocotillo and Coyote Wells.

According to the Sunrise Powerlink Project EIR/EIS, this landscape encompasses a portion of the existing SWPL transmission line as it crosses Sugarloaf Mountain and converges on I-8, passing between the separated eastbound and westbound lanes. Vista views from I-8 are panoramic in scope and encompass the western portion of the Yuha Desert with the Coyote Mountains beyond. Adjacent landform colors are predominantly light tan for soils with reddishbrown hues for rocks and lavender and bluish hues for the distant mountains. Landform textures appear smooth to granular while vegetation is patchy with clumps. Vegetation exhibits a matte texture and vegetation colors include tans to pale yellow for grasses with muted to light and dark greens and tans for the shrubs. Although the boulder slopes of In-Ko-Pah Gorge, Sugarloaf Mountain, and the Coyote Mountains beyond create land variation of visual interest, the overall scenic quality of the desert basin landscape is substantially compromised by the prominent presence of the steel-lattice transmission line with its complex structural form and lines and industrial character. The Sunrise Powerlink Project would further increase the industrial nature of this area. The BLM scenic quality classification is Class C while viewer sensitivity is high. The Interim VRM Class Rating is III.

The BLM's Interim VRM Class III objective allows for a moderate or lower degree of visual change that, while it may attract attention, should not dominate the view of the casual observer.

#### 5.2.1.5.9 Potential Impacts

The BLM's VRM system defines visual impact as the contrast perceived by observers between existing landscapes and proposed projects and activities. The degree to which an activity intrudes on, degrades, or reduces the visual quality of a landscape depends on the amount of visual contrast it introduces. Visual changes or modifications that do not harmonize with landscapes often look out of place, and the resulting contrast may be unpleasant and undesirable.

Site Monitoring and Testing. Possible visual impacts could occur during monitoring and testing due to the road traffic, parking, and associated dust, the presence of meteorological towers, and possibility of associated reflections producing sun glint, and any idle or dismantled equipment on site.

Site Construction. Impacts during project construction could include the development of new or expanded roads, which would lead to visible activity and an increase in dust. Temporary parking would also be visible due to suspended dust and loss of vegetation in parking areas. The temporary presence of large cranes or other equipment would be visible in addition to any visible exhaust plumes from these. Ground disturbance would result in contrast in color, from, texture, and line compared with the rest of the project site. Destruction and removal of vegetation due to clearing, compaction, and dust are expected. Soil scars and exposed slope faces would result from excavation, leveling, and equipment movement. Invasive species may colonize disturbed and stockpiled soils and compacted areas. The land area or footprint of installed equipment would be typically small, as little as 5 to 10% of the site, but could be susceptible to broader

disturbance and alteration over longer periods of time (BLM, 2005). Site restoration activities would reduce many of these impacts.

Site Operation. Wind energy development projects on BLM-administered lands would be highly visible because of the introduction of turbines into typically rural or natural landscapes, many of which have few other comparable structures. The artificial appearance of wind turbines may have visually incongruous "industrial" associations for some, particularly in a predominantly natural landscape. Visual evidence of wind turbines cannot be avoided, reduced, or concealed, owing to their size and exposed location; therefore, effective mitigation could be limited (BLM, 2005).

The BLM Wind PEIS identifies other additional potential visual impacts including shadow flicker and blade glint. Daily and seasonal low sunlight conditions striking ridgelines and towers would tend to make them more visible and more prominent. Interposition of turbines between observers and the sun, particularly in the early and late hours of the day and during the winter season when sun angles are low, could produce a strobe-like effect from flickering shadows cast by the moving rotors onto the ground and objects. A strobe-like effect can also be caused by the regular reflection of the sun off rotating turbine blades. Unlike shadow flicker, perception of blade glint would depend on the orientation of the nacelle, angle of the rotor, and the location of the observer relative to the position of the sun.

If security and safety lighting are used, even if they are downwardly focused, visibility of the site would increase, particularly in dark nighttime sky conditions typical of rural areas. It would also contribute to sky glow resulting from ambient artificial lighting. Any degree of lighting would produce off-site "light trespass"; it would be most abbreviated, however, if the lighting was limited to just the substation and controlled by motion sensors (BLM, 2005).

FAA rules would require lights mounted on nacelles that flash white during the day and twilight (20,000 candela) and red at night (2,000 candela). White lights would be less obtrusive in daylight, but red lights would likely be conspicuous at great distances against dark skies. Typically, the FAA requires warning lights on the first and last turbines in a string and every 1,000 to 1,400 ft (305 to 427 m) in between. Although these beacons would concentrate light in the horizontal plane, they would increase visibility of the turbines, particularly in dark nighttime sky conditions typical of rural areas. Beacons would likely not contribute (because of intermittent operation) to sky glow resulting from artificial lighting. The emission of light to off-site areas could be considerable (BLM, 2005).

The applicant will design the facilities to the extent feasible to minimize the impact on the characteristic visual landscape. The POD should contain statements to the effect that "the applicant will design the facilities to minimize the impact on the characteristic visual landscape.

The process is to design the facility to meet or exceed the objectives for the VRM Interim Class III. High level visual simulations and VRM Contrast Ratings will be done from the Key Observation Points (KOPs). These ratings evaluate the existing contrast and proposed mitigating measures to reduce contrast. Applicant will to the extent feasible use proper design fundamentals, including proper siting and location; reduction of visibility; repetition of form, line, color, and texture of the characteristic landscape; and reduction of unnecessary disturbance. Design strategies to use include color selection, earthwork, vegetation manipulation, and

structure modification. Development of good design strategies minimizes the need for extensive mitigation measures later on in the environmental documentation process.

#### 5.1.9 AVIATION AND/OR MILITARY CONSIDERATIONS

The Ocotillo Express Wind Project would be located approximately five miles southwest of the Naval Reservation Target 103, which is identified as a live bombing area. The project location would be located within the Department of Defense Airspace Consultation Area (BLM, 2009d).

The FAA requires a notice of proposed construction for a project so that it can determine whether it would adversely affect commercial, military, or personal air navigation safety (FAA 2000). One of the triggering criteria is whether the project would be located within 20,000 ft (6,096 m) or less of an existing public or military airport. Another FAA criterion triggering the notice of proposed construction is any construction or alteration of more than 200 ft (61 m) in height above ground level. This criterion applies regardless of the distance from the proposed project to an airport (FAA 2000). As such, the Ocotillo Express Wind Project would be required to notify the FAA of the project.

In accordance with the *Wind Energy Protocol Between The Department of Defense and the Bureau of Land Management Concerning Consultation of Development of Wind Energy Projects and Turbine Siting on Public Lands Administered by the Bureau of Land Management to Ensure Compatibility with Military Activities,* the BLM would be required to send the preliminary POD to the Department of Defense.

#### 5.1.10 OTHER ENVIRONMENTAL CONSIDERATIONS

#### 5.2.1.6 GEOLOGIC RESOURCES

The wind project would cross the northeastern edge of the Yuha Desert and the southern edge of the Coyote Mountains. The project would be located on geologic units including Alluvium and Granitic rocks (CPUC, 2008). Other geologic units may also be present. Alluvium deposits include unconsolidated stream, river, and alluvial fan deposits consisting of primarily sand, silt, clay, and gravel. The granitic rocks that would underlay part of the project location would be La Posta quartz diorite.

The project would be located on hills, mesas, and valleys of the Jacumba Mountains. The sloping hills and valleys in these areas are underlain primarily by granitic and volcanic units which are not typically prone to landslides. However, excavation and grading for the project would potentially trigger rock-falls or shallow soil slides.

The project would be located on the Rositas-Orita-Carrizo-Aco (s994) soil association; other soil associations may be present as well (CPUC, 2008). This soil association includes very deep soils formed in eolian deposits and mixed alluvium. Soil types include: fine sand, loamy sand, gravelly fine sandy loam, extremely gravelly sand; and sandy loam and may include local areas of desert pavement and desert varnish. The hazard erosion of the soil is slight to moderate, with a low to moderate shrink/swell (expansive) potential, and a high risk of corrosion to uncoated steel and low to moderate risk of corrosion to concrete.

Approximately one to ten active mineral claims have been made at the project site (BLM, 2009d). No oil, gas, or geothermal fields are located in the vicinity of the project (DOGGR, 2009). There is little to no potential for the project to impact petroleum or geothermal resources.

The project would be approximately five miles west of the Yuha Wells Fault and the Laguna Salada Fault (CPUC, 2008). The Yuha Wells fault is a fairly recently mapped northeast-southwest trending fault which offsets the Laguna Salada fault from the main trace of the Elsinore fault. The project site would be less than one mile south of the Elsinore Fault zone. This portion of the Elsinore fault is within an Alquist-Priolo zone. Peak ground acceleration at the project site would be between 0.3g to 0.5g.

## 5.2.1.6.1 Potential Impacts

Site Monitoring and Testing. Impacts during monitoring and testing tend to be limited and temporary due to the limited development, excavation activities, and road construction activities. Some clearing and grading may be required but it is unlikely that major road construction would be required. As such, it is unlikely that the activities would activate geologic hazards or increased soil erosion (BLM, 2005).

Site Construction. Activities during construction that may impact geologic resources include clearing, excavating, blasting, trenching, grading, and heavy vehicle traffic. Potential mining for sand, gravel, and/or quarry stone would disturb the land surface and potentially lead to soil erosion. Construction and operation of the project could be impacted by landslide, rock falls, and groundshaking due to earthquakes. Active earthquakes could also trigger landslides during heavy precipitation conditions.

Soil erosion would likely occur due to ground surface disturbance which could lead to degradation of water quality in nearby surface water bodies. Activities that would contribute to soil erosion include ground disturbance at wind tower pads, access roads, staging areas, lay-down areas, and at other on-site structures. Use of heavy equipment could disturb or destroy soil conditions, and construction activities could disturb stormwater runoff patterns (BLM, 2005).

Site Operation and Decommissioning. Few impacts to geologic resources and soil erosion would be expected during project operation especially if appropriate mitigation had been implemented during construction. Soil erosion could occur during maintenance of the project due to vehicle traffic.

## 5.2.1.7 WATER RESOURCES

The Ocotillo Express Wind Project would be located on the Coyote Wells Valley Groundwater Basin. The Coyote Wells Valley groundwater basin are EPA-designated Sole Source Aquifers. This means the aquifer supplies more than 50% of a community's drinking water. Any project which is financially assisted by federal grants or federal loan guarantees, and which has the potential to contaminate a sole source aquifer, should be modified to reduce or eliminate the risk (USEPA, 2009).

The Coyote Wells Groundwater Basin, located near the international border with Mexico in the western Yuha Desert west of Imperial Valley, is in unconsolidated sediment up to 650 feet thick.

Water bearing zones are mostly 100 to 300 feet below ground surface. Unconfined shallow groundwater exists in parts of the basin, but the quality of the water is poor. Natural fluoride levels in some wells are as high as 3.5 mg/L (CDWR, 2004).

The Palm Canyon Wash and Meyer Creek cross the project site in addition to several unnamed washes.

#### 5.2.1.7.1 Potential Impacts.

A wind energy project can impact surface water and groundwater in several different ways, including the use of water resources, changes in water quality, alteration of the natural flow system, and the alteration of interactions between the groundwater and surface water.

Site Monitoring and Testing. Impacts during site monitoring and testing would be expected to be limited because few new access roads would be needed, and on-site activities would be limited and temporary. Little water would likely be used during this phase of development and would potentially be trucked in from off site. Impacts to water resources, local water quality, water flows, and surface water/groundwater interactions are expected to be negligible to small, unless extensive excavation or road construction occurs.

Site Construction. A number of construction activities would require water use including water used for dust control, water used for making concrete, and water used by the construction crew. Construction activities would also have the potential to impact water quality due to increased soil erosion due to ground disturbing activities, weathering of exposed soil or spoils from foundation excavation which could release chemical through oxidation, discharges of wastewater or sanitary water, and pesticide application (BLM, 2005).

Construction activities could also lead to the disruption of natural surface water and groundwater flow systems should surface water be diverted on site or off site by access road systems or storm water control systems. This could also impact groundwater flow.

Site Operation. Few impacts are expected during operation because minimal ground disturbance would be expected and minimal water use would be required.

## 5.2.1.8 AIR QUALITY

The Imperial County portion of the Salton Sea Air Basin is administered by the Imperial County Air Pollution Control District (ICAPCD). Ambient air quality is characterized in terms of the "criteria air pollutants," which refer to a group of pollutants for which regulatory agencies have adopted ambient standards and region-wide pollution reduction plans. Criteria air pollutants include ozone, carbon monoxide (CO), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), particulate matter, and lead. Volatile organic compounds (VOC) or reactive organic gases (ROG) and nitrogen oxides (NOx) are also regulated as criteria pollutants because they are precursors to ozone formation. Certain VOCs also qualify as toxic air contaminants. Two subsets of particulate matter are inhalable particulate matter less than ten microns in diameter (PM10) and fine particulate matter less than 2.5 microns in diameter (PM2.5). Sulfur oxides (SOx) and NOx are also precursors to particulate matter formation in the atmosphere.

Air quality is determined by measuring ambient concentrations of criteria pollutants, which are air pollutants for which acceptable levels of exposure can be determined and for which standards have been set. The degree of air quality degradation is then compared to the current National and California Ambient Air Quality Standards (NAAQS and CAAQS). Because of unique meteorological conditions in California, and because of differences of opinion by medical panels established by CARB and the U.S. EPA, there is diversity between State and federal standards currently in effect in California. In general, the CAAQS are more stringent than the corresponding NAAQS. Table XX shows the standards currently in effect in California.

Air quality standards are designed to protect those people most susceptible to respiratory distress, such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and people engaged in strenuous work or exercise, including outdoor recreational activity.

| Table XX.         National and California Ambient Air Quality Standards |                |                                                                                                               |                      |  |  |  |  |  |
|-------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| Pollutant                                                               | Averaging Time | California Standards                                                                                          | National Standards   |  |  |  |  |  |
| Ozone                                                                   | 1-hour         | 0.09 ppm                                                                                                      | _                    |  |  |  |  |  |
|                                                                         | 8-hour         | 0.07 ppm                                                                                                      | 0.075 ppm            |  |  |  |  |  |
| PM10                                                                    | 24-hour        | 50 μg/m³                                                                                                      | 150 μg/m³            |  |  |  |  |  |
|                                                                         | Annual         | 20 µg/m³                                                                                                      | —                    |  |  |  |  |  |
| PM2.5                                                                   | 24-hour        | _                                                                                                             | 35 µg/m <sup>3</sup> |  |  |  |  |  |
|                                                                         | Annual         | 12 µg/m³                                                                                                      | 15 μg/m <sup>3</sup> |  |  |  |  |  |
| СО                                                                      | 1-hour         | 20 ppm                                                                                                        | 35 ppm               |  |  |  |  |  |
|                                                                         | 8-hour         | 9.0 ppm                                                                                                       | 9.0 ppm              |  |  |  |  |  |
| NO <sub>2</sub>                                                         | 1-hour         | 0.18 ppm                                                                                                      | —                    |  |  |  |  |  |
|                                                                         | Annual         | 0.030 ppm                                                                                                     | 0.053 ppm            |  |  |  |  |  |
| SO <sub>2</sub>                                                         | 1-hour         | 0.25 ppm                                                                                                      | —                    |  |  |  |  |  |
|                                                                         | 24-hour        | 0.04 ppm                                                                                                      | 0.14 ppm             |  |  |  |  |  |
|                                                                         | 1-year         | —                                                                                                             | 0.03 ppm             |  |  |  |  |  |
| Visibility-Reducing<br>Particles                                        | 8-hour         | Extinction coefficient 0.23/km,<br>visibility of 10 miles due to<br>particles when relative humidity<br>< 70% | _                    |  |  |  |  |  |

Table XX National and California Ambient Air Quality Standards

Notes: ppm=parts per million; µg/m<sup>3</sup>= micrograms per cubic meter; "—" = no standard Source: CARB Ambient Air Quality Standards Table, September 2009

Each geographic area is designated by either the U.S. EPA or CARB as a nonattainment area if violations of the ambient air quality standards are persistent. Imperial County is classified as a nonattainment area for the State ozone standard, and like nearly every other area in the State of California, it is a nonattainment area with respect to the PM10 CAAQS. Since 1994, the U.S. EPA has found Imperial Valley to be in serious nonattainment for PM10. Federal PM2.5 standards are relatively recent, and although there is insufficient data to determine attainment status of the air basin as a whole under the federal PM2.5 standards, the City of Calexico is designated nonattainment for State-level CO and PM2.5. A summary of the attainment status within the

project area is provided below. The attainment status of San Diego is provided for informational purposes as the project would be adjacent to San Diego County and the San Diego Air Basin, administered by the San Diego Air Pollution Control District.

|                               | Ozone |                     | PM10  |                    | PM2.5 |         | со    |         | NO <sub>2</sub> |         | SO <sub>2</sub> |         |
|-------------------------------|-------|---------------------|-------|--------------------|-------|---------|-------|---------|-----------------|---------|-----------------|---------|
| Air Basin                     | Stat  | e Federal           | State | e Federal          | State | Federal | State | Federal | State           | Federal | State           | Federal |
| Salton Sea<br>Imperial County | , N   | N<br>(Margina<br>I) | Ν     | N<br>(Serious<br>) | U/A   | U/A     | A     | A       | A               | A       | A               | A       |
| San Diego County              | Ν     | N<br>(Subpart<br>1) | Ν     | U/A                | Ν     | U/A     | A     | A       | A               | A       | A               | A       |

Note: A = Attainment of Ambient Air Quality Standards; U/A = Unclassified/Attainment; N = Nonattainment.

"Subpart1" areas are subject to general, less-prescriptive requirements than "classified" nonattainment areas.

Source: CARB, 2006 (http://www.arb.ca.gov/desig/desig.htm) and U.S. EPA, 2009 (http://www.epa.gov/region09/air/).

#### 5.2.1.9 SALTON SEA AIR BASIN

The Imperial County Air Pollution Control District is the primary agency responsible for planning, implementing, and enforcing federal and State air quality standards in Imperial County. The following rules and regulations apply to all sources in the jurisdiction of ICAPCD:

- ICAPCD Regulation II Rule 202, Exemptions. Portable equipment holding a valid registration under the Statewide Portable Equipment Registration Program is not required to obtain a permit from the ICAPCD.
- ICAPCD Regulation IV Rule 401, Opacity of Emissions. Prohibits any activity causing emissions dark or darker in shade as that designated as Number 1 on the Ringlemann Chart (20 percent opacity) for a period or periods aggregating more than three minutes in any hour.
- ICAPCD Regulation IV Rule 407, Nuisances. Prohibits any activity that emits pollutants which cause injury, detriment, nuisance or annoyance to any considerable number of persons or to the public or which endanger the comfort, repose, health or safety of any such persons or the public or which cause or have a natural tendency to cause injury or damage to business or property.
- ICAPCD Regulation VIII Rule 800, General Requirements for Control of Particulate Matter. Limits emissions from construction and earthmoving activities (Rule 801). Requires dust control along unpaved access roads and unpaved staging areas or yards (Rule 805), for handling of materials (Rule 802), and for any material deposited on a paved surface (Rule 803). Dust control plans must be filed and approved by the ICAPCD.

Air Quality Management Plans. The ICAPCD established an attainment plan for PM10 in 1993 (PM10 SIP) and updated the plan in 2005 with the Regulation VIII rules that include the "best available control measures" for control of windblown particulate matter and particulate matter from travel on unpaved roads across Imperial County. The ICAPCD also oversees a Natural Events Action Plan that allows the ICAPCD to document and take into account high PM10 concentrations caused by qualified natural events, such as windstorms and wildfires. The

Regulation VIII Rules and the Natural Events Action Plan are part of the regional plan to comply with PM10 standards. ICAPCD also maintains and implements an ozone attainment plan that depends on the CARB's SIP to achieve reductions of ozone precursors from mobile sources.

## 5.2.1.9.1 Potential Impacts

Site Monitoring and Testing. Activities that would generate dust and emissions during site monitoring and testing include worker and equipment vehicle travel on access and site roads to carry towers, worker vehicle travel for routine maintenance, brush clearing at tower sites, and erection of the meteorological towers (BLM, 2005). Such activities would generate fugitive dust from road travel and clearing and tailpipe emissions from vehicular exhaust.

Site Construction. Prior to construction permits from local air quality agencies would potentially be required. Activities that would generate dust and emissions during construction include 1) clearing and grade alterations for site access, 2) foundation excavations and installations, 3) wind turbine erection, and 4) miscellaneous ancillary construction. Emissions from vehicle traffic and delivery traffic are likely to occur during each of these phases. Construction equipment emissions would generate fugitive dust from vehicle travel and movement and transportation of soil. Use of onsite power from diesel generators for the batch plant and other equipment would also result in emissions. Concrete batching would produce fugitive particles associated with mixing of concrete and the storage piles associated with the concrete batching.

Site Operation. Operation of the Ocotillo Express Wind project would be unlikely to adversely impact air quality. Operation of the wind turbines would not produce direct emissions. Minor VOC emissions would occur during routine changes of lubricants and cooling fluids and grease. Other minor emissions would be generated by road travel, vehicular exhaust, and brush clearing.

## 5.2.1.10 TRANSPORTATION

The Ocotillo Express Wind project would be reached via Interstate 8, County Highway S2, and State Route 98. A number of BLM rough bladed or two-tracked surface roads cross the project site. The San Diego and Arizona Eastern Railway (SD&AE), owned by the San Diego Metropolitan Transit System, would cross the project site. This line connects with the Santa Fe Railway.

## 5.2.1.10.1 Potential Impacts

Site Monitoring and Testing. It is likely that activities would be limited to low volumes of heavy-duty and medium duty trucks and personal vehicles. It is unlikely that existing roads would be impacted although some new access roads may be required depending on the tower locations.

Site Construction. Movement of equipment and materials to the site during construction would cause an increase in the level of service of the roadways. Most equipment would likely remain on site for the duration of the construction activities (BLM, 2005).

Shipments of oversized and overweight loads could cause temporary disruptions to secondary and primary roads used to access the construction site. Because of the anticipated weight of the turbine components and electrical transformers that would be brought to the site, maximum grade becomes a critical road design parameter. Turbine components would likely require permitting of oversized loads.

Site Operation. Limited to low volumes of heavy-duty and medium duty trucks and personal vehicles would likely be used during operation. Some large turbine components would potentially be required for equipment replacement; however, this is expected to be infrequent.

#### 5.2.1.11 SITE DECOMMISSIONING. AS WITH SITE CONSTRUCTION, OVERSIZED AND OVERWEIGHT LOADS ARE EXPECTED DURING SITE DECOMMISSIONING DUE TO THE NEED FOR REMOVAL OF THE TURBINE COMPONENTS. HEAVY EQUIPMENT AND CRANES WOULD BE REQUIRED.

## 5.2.1.12 TRANSPORTATION

The Ocotillo Express Wind project would be reached via Interstate 8, County Highway S2, and State Route 98. A number of BLM rough bladed or two-tracked surface roads cross the project site. The San Diego and Arizona Eastern Railway (SD&AE), owned by the San Diego Metropolitan Transit System, would cross the project site. This line connects with the Santa Fe Railway.

#### 5.2.1.12.1 Potential Impacts

Site Monitoring and Testing. It is likely that activities would be limited to low volumes of heavy-duty and medium duty trucks and personal vehicles. It is unlikely that existing roads would be impacted although some new access roads may be required depending on the tower locations.

Site Construction. Movement of equipment and materials to the site during construction would cause an increase in the level of service of the roadways. Most equipment would likely remain on site for the duration of the construction activities (BLM, 2005).

Shipments of oversized and overweight loads could cause temporary disruptions to secondary and primary roads used to access the construction site. Because of the anticipated weight of the turbine components and electrical transformers that would be brought to the site, maximum grade becomes a critical road design parameter. Turbine components would likely require permitting of oversized loads.

Site Operation. Limited to low volumes of heavy-duty and medium duty trucks and personal vehicles would likely be used during operation. Some large turbine components would potentially be required for equipment replacement; however, this is expected to be infrequent.

Site Decommissioning. As with site construction, oversized and overweight loads are expected during site decommissioning due to the need for removal of the turbine components. Heavy equipment and cranes would be required.

## 5.2.1.13 HAZARDOUS MATERIALS AND WASTE MANAGEMENT IMPACTS

A limited amount of hazardous material may be used in the construction and operation of the Ocotillo Express Wind Energy project. These may include cleaning fluids, fuels, and lubricants. These would require appropriate storage, use, and disposal. In addition, soiled rags and similar applicators and clean up materials would require disposal. Except for the possibility of illegal disposal, the site is not expected to have any existing contamination. [This would be confirmed through a Phase 1 Environmental Site Assessment]. The nearest sensitive receptors are located south of the northeastern portion of the project site in Ocotillo and east of the southeast portion of the project in Coyote Wells.

Packaging materials are expected to be the major solid waste generated during construction. Except for parts packaging, operational waste would be minor and similar to household waste.

The closest landfills to the project include (CIWMB, 2007):

- Allied Imperial Landfill (104 East Robinson Road) that allows a maximum permitted throughput of 1,135 tons/day and has a remaining capacity of 2,105,500 cubic yards
- Imperial Solid Waste Site (1705 West Worthington Road) that allows a maximum permitted throughput of 207 tons/day and has a remaining capacity of 183,871 cubic yards

#### **5.2.1.13.1 Potential Impacts**

The use, storage, and disposal of hazardous materials and waste associated with a typical wind energy project could result in potential adverse health and environmental impacts associated with improper management of these materials. Hazardous materials likely to be used include fuels (gasoline, diesel fuel, etc.), lubricants, cleaning solvents, paints, pesticides, and potentially explosives. In general, most potential impacts are associated with the release of these materials to the environment, which could occur if the materials are improperly used, stored, or disposed of. Direct impacts of such releases could include contamination of vegetation, soil, and water, which could result in indirect impacts to human and wildlife populations.

Compliance with all applicable federal and state regulations regarding notices to federal and local emergency response authorities and development of applicable emergency response plans are required for hazardous materials when quantities on hand exceed amounts specified in regulations.

Solid wastes produced during construction of a wind energy development project would include containers, dunnage and packaging materials for turbine components, and miscellaneous wastes associated with assembly activities (BLM, 2005). Solid wastes resulting from the presence of the construction work crews would include food scraps and other putrescible wastes. Solid wastes produced during the operational phase would be very limited and consist primarily of office-related wastes generated at the control facility and food wastes from the maintenance crews who might be present on the site during business hours. All such wastes are expected to be nonhazardous, and typically they are containerized on site and periodically removed by commercial haulers to existing off-site, appropriately permitted disposal facilities.

During decommissioning, substantial quantities of solid wastes and industrial wastes could result from dismantlement of a wind energy project. Fluids drained from turbine drivetrain components (e.g., lubricating oils, hydraulic fluids, coolants) are likely to be similar in chemical composition to spent fluids removed during routine maintenance and would be managed in the same manner as analogous maintenance-related wastes. Tower segments are expected to be stored on site for a brief period and eventually sold as scrap. Likewise, turbine components (emptied of their fluids) may have some salvage value. Recycling turbine components would diminish any impacts created by solid wastes during decommissioning. Electrical transformers are expected to be removed from the site and available for other applications elsewhere (in most cases, without the need for removing dielectric fields). Substantial amounts of broken concrete from tower and building foundations as well as rock or gravel from on-site roads or electrical substations would also result from decommissioning. All such materials are expected to be salvageable for use in road-building or bank stabilization projects. Miscellaneous materials without salvage value are expected to be nonhazardous and should be removed from the site by a licensed hauler and delivered to appropriately permitted disposal facilities.

#### 5.2.1.14 Health and Safety Impacts

The Ocotillo Express Wind project would be located in an open space area. The project would be located south of several large quarries in the southern foothills of the Coyote Mountains, and would be located approximately eight miles west of the large gypsum sheetrock manufacturing plant in Plaster City. The project would be located approximately two miles west of the proposed Stirling Engine System Solar Two, LLC solar thermal plant. The nearest sensitive receptors are located immediately south of the northeastern portion of the project site in Ocotillo and east of the southeast portion of the project in Coyote Wells.

Construction using heavy equipment and bulky materials can pose safety risks to workers. Maintenance of these facilities, including elements high off the ground and having moving parts, can also pose risks. Risks to public health and safety generally include risks associated with major construction sites, rare tower failures, human-caused fire, EMF exposure, aviation safety interference, EMI, low-frequency sound, and shadow flicker.

#### **5.2.1.14.1 Potential Impacts**

According to the BLM Wind EIS, one of the primary safety hazards of wind turbines occurs if a rotor blade breaks and parts are thrown off. This could occur as a result of rotor overspeed, although such an occurrence has been extremely rare and happens mostly with older and smaller turbines. The difficulty of predicting the trajectory of a broken rotor blade makes the quantitative determination of safety risk very uncertain. However, it is known that these types of events are very rare and the probability of a fragment hitting a person is even lower. With proper engineering design and quality control, blade throw should rarely occur.

## 5.3 Design criteria (mitigation measures) proposed by applicant and included in POD

#### **5.3.1** FACILITY COMMITMENTS

- <u>Alternate Turbine Locations</u> 244 potential turbine locations will be analyzed, but a range of sites will be developed, allowing selection of the best wind sites and avoidance of environmentally sensitive areas.
- <u>Use of Tubular Conical Steel Turbine Towers</u> Tubular towers do not provide locations for raptors to perch, decreasing risk of collisions with turbine blades.
- <u>Underground Collection System</u> Reduces the visual impact of overhead transmission as well as the potential impact to avian and bat species from collisions.
- <u>Setbacks</u> Turbines will be set back from public roads at least 1.1x total turbine height and will be setback 1.5x total turbine height from any property lines and ROW boundary.

#### **5.3.2** CONSTRUCTION COMMITMENTS

- <u>Best Management Practices (BMPs)</u> For example, construction vehicle movement within the project boundary would be restricted to pre-designated access, contractor-required access, or public roads. In construction areas where ground disturbance is unavoidable, surface restoration would consist of returning disturbed areas back to their natural contour (if feasible), reseeding with native seed mix. A full list of BMPs will be developed and included in the COM Plan.
- A <u>Transportation Plan</u> shall be developed, particularly for the transport of turbine components, main assembly cranes, and other large pieces of equipment. The plan shall consider specific object sizes, weights, origin, destination, and unique handling requirements and shall evaluate alternative transportation approaches. In addition, the process to be used to comply with unique state requirements and to obtain all necessary permits shall be clearly identified.
- A <u>Traffic Management Plan</u> shall be prepared as part of the Transportation Plan for the site access roads to ensure that no hazards would result from the increased truck traffic and that traffic flow would not be adversely impacted. This plan shall incorporate measures such as informational signs, flaggers when equipment may result in blocked throughways, and traffic cones to identify any necessary changes in temporary lane configuration. Additionally, SVW will consult with local planning authorities regarding increased traffic during the construction phase, including an assessment of the number of vehicles per day, their size, and type. Specific issues of concern (e.g., location of school bus routes and stops) shall be identified and addressed in the traffic management plan.

#### 5.3.3 **RESOURCE CONSERVATION MEASURES**

• Direct avoidance of any eligible cultural resources, to the extent feasible. Applicant intends to develop a cultural resource monitoring and mitigation plan prior to the start of construction that will include a procedure for identifying areas to be monitored during construction and that will ensure qualified archaeological monitors are used to carry out this task. A discovery plan, which may be part of the cultural resource monitoring and mitigation plan, may be part of the proposed mitigation. Construction workers will be educated about the importance of preserving significant cultural properties, and a process will be established for them to report and protect suspected discoveries. Curation will be arranged for any archaeological materials collected.

- Wildlife Mitigation and Monitoring Plan The BLM El Centro Field is currently preparing wind energy protocol in coordination with other agencies. If the El Centro BLM wind energy protocol is not complete, an individual plan specific to Ocotillo Express would be prepared as part of the COM plan. The plan would detail initial mitigation requirements and an adaptive mitigation plan using a tiered approach that details post-construction monitoring requirements and utilizes those findings to implement necessary levels of mitigation. The plan would be based on avian/bat mortality assessments and be designed and implemented in coordination with the BLM and other appropriate agencies. Additionally, available BMP's and guidelines for mitigating impacts of wind energy development to migratory birds an bats will be used to develop mitigation measures The wildlife mitigation and monitoring plan will also use the FTHL conservation agreement and strategy to develop applicable measures.
- Survey all proposed ground disturbing activities in sensitive habitat areas utilizing the appropriate protocol.
- Facilities shall be designed to discourage their use as perching or nesting substrates by birds. For example, power lines and poles shall be configured to minimize raptor electrocutions and discourage raptor and raven nesting and perching.
- <u>Migratory Birds</u> If construction is planned during migratory periods, migratory bird clearance surveys would be conducted. Evidence of active nests or nesting will be reported immediately to the BLM to determine appropriate minimization measures (i.e. avoidance buffer), on a case-by-case basis.
- Develop a storm water management plan for the site to ensure compliance with applicable regulations and prevent off-site migration of contaminated storm water or increased soil erosion.
- <u>Restoration Plan</u> A plan would be prepared as part of the COM plan. The plan would describe restoration methods and requirements for temporary disturbance areas.
- For soil disturbing actions which will require reclamation, salvage and stockpile all available growth medium prior to surface disturbances. Seed stock piles if they are to be left for more than one growing season. Re-contour all disturbance areas to blend as nearly as possible with the natural topography prior to re-vegetation. Rip all compacted portions of the disturbance to an appropriate depth based on site characteristics. Establish an adequate seed bed to provide good seed to soil contact.
- Do not allow bristlecone pine, limber pine, or swamp cedar to be harvested except for education, scientific, research purposed.
- Develop a plan for control of <u>noxious weeds and invasive species</u>, which could occur as a result of new surface disturbance activities at the site. The plan shall address monitoring, education of personnel on weed identification, the manner in which weeds spread, and methods for treating infestations. The use of certified weed-free mulching shall be required. If trucks and construction equipment are arriving from locations with known invasive vegetation problems, a controlled inspection and cleaning area shall be established to visually inspect construction equipment arriving at the project area and to remove and collect seeds that may be adhering to tires and other equipment surfaces.
- If pesticides are used on the site, an integrated pest management plan shall be developed to ensure that applications would be conducted within the framework of BLM and DOI policies and entail only the use of EPA-registered pesticides approved for use in BLM's Record of Decision: Vegetation Treatments Using Herbicides (Sept. 2007), as supported by the FEIS for Vegetation Treatments Using Herbicides (June 2007). Pesticide use shall

be limited to non-persistent, immobile pesticides and shall only be applied in accordance with label and application permit directions and stipulations for terrestrial and aquatic applications.

- All straw, hay, straw/hay, or other organic products used for reclamation or stabilization activities must be certified that all materials are free of plant species listed on the California noxious weed list or specifically identified by the El Centro Field Office. Inspections will be conducted by a weed scientist or qualified biologist.
- Where appropriate, vehicles and heavy equipment used for the completion, maintenance, inspection, or monitoring of ground disturbing activities; for emergency fire suppression; or for authorized off-road driving will be free of soil and debris capable of transporting weed propagules. Vehicles and equipment will be cleaned with power or high pressure equipment prior to entering or leaving the work site or project area. Vehicles used for emergency fire suppression will be cleaned as a part of check-in and demobilization procedures. Cleaning efforts will concentrate on tracks, feet or tires, and on the undercarriage. Special emphasis will be applied to axles, frames, cross members, motor mounts, on and underneath steps, running boards, and front bumper/brush guard assemblies. Vehicle cabs will be recorded using global positioning systems or other mutually acceptable equipment and provided to the El Cento District Office Weed Coordinator or designated contact person.
- Prior to the entry of vehicles and equipment to a planned disturbance area, a weed scientist or qualified biologist will identify and flag areas of concern. The flagging will alert personnel or participants to avoid areas of concern.
- To minimize the transport of soil-borne noxious weed seeds, roots, or rhizomes, infested soils or materials will not be moved and redistributed on weed-free or relatively weed-free areas. In areas where infestations are identified or noted and infested soils, rock, or overburden must be moved, these materials will be salvaged and stockpiled adjacent to the area from which they were stripped. Appropriate measures will be taken to minimize wind and water erosion of these stockpiles. During reclamation, the materials will be returned to the area from which they were stripped.

## 5.4 RESOURCES

- BLM (Bureau of Land Management). 2009. California Desert District. http://www.blm.gov/ca/st/en/fo/cdd/about\_cdd.html Accessed September 12, 2009.
- \_\_\_\_\_. 2009b. El Centro Wilderness: Jacumba Wilderness. http://www.blm.gov/ca/pa/wilderness/wa/ areas/jacumba.html. Accessed September 12.
- . 2004. California Bureau of Land Management, El Centro Field Office: Exploring the Yuha Desert. http://www.blm.gov/pgdata/etc/medialib/blm/ca/pdf/pdfs/elcentro\_pdfs.Par.0f9ac3ce.File.dat/yuha\_blm.pd f Accessed September 12, 2009.
- . 2009c. California Bureau of Land Management, El Centro Field Office: Plaster City Open Area.

   Website
   modified
   February
   2009.

   http://www.blm.gov/ca/st/en/fo/elcentro/recreation/ohvs/plaster\_city.html Accessed September 12.
- . 2008. El Centro Desert Access Guide Points of Interest. Website modified January 2008. http://www.blm.gov/ca/st/en/fo/elcentro/recreation/poi/el\_centropoi.html Accessed September 12.

- \_\_\_\_\_. 2005. Final Programmatic Environmental Impact Statement on Wind Energy Development on BLM-Administered Lands in the Western United States.
- . 2009d. Bureau of Land Management Geocommunicator. http://www.geocommunicator.gov/blmMap/Map.jsp?MAP=Energy Accessed September 12.
- California Department of Water Resources. 2004. Coyote Wells Valley Groundwater Basin. http://www.water.ca.gov/pubs/groundwater/bulletin\_118/basindescriptions/7-29.pdf Accessed August 14, 2009.
- DOGGR (State of California Department of Conservation Oil, Gas, & Geothermal). 2009. DOGGR Online Mapping System. < http://maps.conservation.ca.gov/doms/index.html> Accessed September 14.
- Flat-Tailed Horned Lizard Interagency Coordinating Committee. 2003. Flat-Tailed Horned Lizard Rangewide Management Strategy, 2003 Revision. An Arizona-California Conservation Strategy. May.
- USEPA (United States Environmental Protection Agency). 2009. Region 9: Water Program Sole Source Aquifer. < http://www.epa.gov/region09/water/groundwater/ssa.html> Accessed September 14, 2009.
- USFWS (Department of Interior Fish and Wildlife Service). 2009. 50 CRF Part 17 Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Peninsular Bighorn Sheep and Determination of a Distinct Population Segment of Desert Bighorn Sheep (*Ovis canadensis nelsoni*); Final Rule. <a href="http://edocket.access.gpo.gov/2009/pdf/E9-7767.pdf">http://edocket.access.gpo.gov/2009/pdf/E9-7767.pdf</a> Accessed September 14.

## 6.0 MAPS AND DRAWINGS

# 6.1 MAPS WITH FOOTPRINT OF WIND FACILITY (7.5 MIN TOPOGRAPHIC MAPS OR EQUIVALENT TO INCLUDE REFERENCES TO PUBLIC LAND SURVEY SYSTEM)

Figure 6.1-1. Project Area Facility Layout

Figure 6.1-2. Typical Use Areas

## 6.2 INITIAL DESIGN DRAWINGS OF WIND FACILITY LAYOUT AND INSTALLATION, ELECTRICAL FACILITIES, AND ANCILLARY FACILITIES.

Figure 6.2-1. Site Layout

6.2-2. Road and Turbine Details

Figure 6.2-3. Operational Diagram

Figure 6.2-4. Plan View

6.3 INITIAL SITE GRADING PLAN

Insert Grading Plan

# 6.4 MAPS WITH TRANSMISSION FACILITIES, SUBSTATIONS, DISTRIBUTION, COMMUNICATIONS

See Section 6.2 Figures

## **6.5** Access and transportation maps

See Figure 6.1-1.

# **6.6** *Preliminary visual resource evaluation and visual resource simulations*

Photographic visual simulations of the proposed project as it would appear from several KOPs are being prepared to assist with the visual contrast rating analysis.

#### References

- Bureau of Land Management (BLM). 1980. Visual Resource Management Program. U.S. Government Printing Office, Washington, D.C.
- BLM. 1992. BLM Handbook 8400 Visual Resource Management.
- BLM 2005. Final Wind Energy Programmatic Environmental Impact Statement. U.S. Department of Interior, U.S. BLM, Washington, D.C.

## **APPENDIX A LEGAL DESCRIPTION**

### Exhibit A Right-Of-Way Legal Land Descriptions of Project Area

|       | Township 16 South section 17  | Range 9 East |                |
|-------|-------------------------------|--------------|----------------|
| Track |                               |              | Project Total- |
| 40    | lot 3                         | 13.86        | 14980.88       |
|       | lot 4                         | 40.00        |                |
|       | lot 5                         | 26.22        |                |
|       | lot 6                         | 13.78        |                |
|       | lot 7                         | 13.78        |                |
|       | lot 8                         | 26.22        |                |
|       | lot 9                         | 40.00        |                |
|       | lot 10                        | 13.81        |                |
|       |                               | 187.67       |                |
|       | section 18                    |              |                |
|       | lots 7,8,9, (40 acres ea)     | 120.00       |                |
|       | lot 10                        | 17.78        |                |
|       | lot 11                        | 17.69        |                |
|       | lot 12, 13, 14 (40 acres ea)  | 120.00       |                |
|       | lots 17,18,19,20,21 (40 acres |              |                |
|       | ea)                           | 200.00       |                |
|       | lot 22                        | 18.06        |                |
|       | lot 23                        | 18.53        |                |
|       | lots 24,25,26,27,28 (40 acres |              |                |
|       | ea)                           | 200.00       |                |
|       | SE1/4                         | 160.00       |                |
|       |                               | 872.06       |                |
|       | section 19                    |              |                |
|       | lot 7                         | 13.74        |                |
|       | lot 8                         | 40.00        |                |
|       | lot 9                         | 40.00        |                |
|       | lot 10                        | 40.00        |                |
|       | lot 11                        | 40.00        |                |
|       | lot 12                        | 40.00        |                |
|       | lot 13                        | 18.28        |                |
|       | lot 14                        | 17.79        |                |
|       |                               |              |                |

|             | Lot 15     | 40.00   |
|-------------|------------|---------|
|             | lot 16     | 40.00   |
|             | lot 17     | 40.00   |
|             | lot 18     | 40.00   |
|             | lot 19     | 40.00   |
|             | lot 20     | 13.70   |
|             | lot 25     | 13.66   |
|             | lot 26     | 40.00   |
|             | lot 27     | 40.00   |
|             | lot 28     | 40.00   |
|             | lot 29     | 40.00   |
|             | lot 30     | 40.00   |
|             | lot 31     | 17.29   |
|             | lot 32     | 16.78   |
|             | lot 33     | 40.00   |
|             | lot 34     | 40.00   |
|             | lot 35     | 40.00   |
|             | lot 36     | 40.00   |
|             | lot 37     | 40.00   |
|             | lot 38     | 13.62   |
| Track       |            |         |
| 41          | lot 5      | 40.00   |
|             | lot 6      | 26.26   |
| Track       | L. 1. 24   | 26.20   |
| 42          | lot 21     | 26.30   |
| Track       | lot 22     | 40.00   |
| 43          | lot 23     | 40.00   |
| 73          | lot 24     | 26.34   |
|             | lot 39     | 26.38   |
|             | lot 40     | 40.00   |
|             | 101 40     | 1190.14 |
|             |            | 11,0.14 |
|             | section 20 |         |
| Track       |            |         |
| 41<br>Track | lot 7      | 13.76   |

| 41    |        | 13.70 |
|-------|--------|-------|
| Track |        |       |
| 42    | lot 8  | 13.72 |
| Track |        |       |
| 43    | lot 19 | 13.68 |
|       | lot 20 | 13.64 |
| Track |        |       |
| 44    | lot 16 | 13.74 |
|       | lot 17 | 40.00 |
|       | lot 18 | 26.32 |
|       |        |       |

|       | lot 21     | 26.36  |
|-------|------------|--------|
|       | lot 22     | 40.00  |
|       | lot 23     | 13.70  |
| Track |            |        |
| 45    | lot 4      | 13.82  |
|       | lot 5      | 40.00  |
|       | lot 6      | 26.24  |
|       | lot 9      | 26.28  |
|       | lot 10     | 40.00  |
|       | lot 11     | 13.78  |
| Track |            |        |
| 46    | lot 2      | 13.88  |
|       | lot 3      | 26.18  |
| Track | lot 1      | 26.12  |
| 47    | lot 1      | 26.12  |
|       | lot 12     | 26.22  |
|       | lot 13     | 40.00  |
|       | lot 14     | 40.00  |
|       | lot 15     | 26.26  |
|       | lot 24     | 26.30  |
|       | lot 25     | 40.00  |
|       |            | 640.00 |
|       |            |        |
| Track | section 21 |        |
| 47    | lot 6      | 13.84  |
| .,    | lot 7      | 13.80  |
|       | lot 18     | 13.76  |
|       | lot 19     | 13.72  |
| Track |            | 15.72  |
| 48    | lot 3      | 13.77  |
|       | lot 4      | 40.00  |
|       | lot 5      | 26.16  |
|       | lot 8      | 26.20  |
|       | lot 9      | 40.00  |
|       | lot 10     | 13.75  |
|       | lot 15     | 13.73  |
|       | lot 16     | 40.00  |
|       | lot 17     | 26.24  |
|       | lot 20     | 26.28  |
|       | lot 21     | 40.00  |
|       | lot 22     | 13.71  |
| Track |            |        |
| 49    | lot 1      | 40.00  |
|       | lot 2      | 26.23  |
|       |            |        |

| Section 22           | 26.25<br>40.00<br>40.00<br>26.27<br>573.71 |
|----------------------|--------------------------------------------|
| lot 13<br>lot 14     | 40.00<br>26.27                             |
| lot 14<br>Section 22 | 26.27                                      |
| Section 22           |                                            |
| Section 22           | 573.71                                     |
|                      |                                            |
|                      |                                            |
| Track                |                                            |
| 49 lot 6             | 13.70                                      |
| lot 7                | 13.70                                      |
| lot 18               | 13.70                                      |
| Track                | 15.70                                      |
| 50 lot 3             | 13.78                                      |
| lot 4                | 40.00                                      |
| lot 5                | 26.30                                      |
| lot 8                | 26.30                                      |
| lot 9                | 40.00                                      |
| lot 10               | 13.78                                      |
| lot 15               | 13.78                                      |
| lot 16               | 40.00                                      |
| lot 17               | 26.30                                      |
| lot 20               | 26.30                                      |
| lot 21               | 40.00                                      |
| lot 22               | 13.78                                      |
| Track                | 10070                                      |
| 51 lot 1             | 40.00                                      |
| lot 2                | 26.22                                      |
| lot 11               | 26.22                                      |
| lot 12               | 40.00                                      |
| Track                |                                            |
| 52 C                 | 40.00                                      |
| D                    | 40.00                                      |
| E                    | 40.00                                      |
| F                    | 40.00                                      |
|                      | 653.86                                     |
| section 23           |                                            |
| E1/2E1/2             | 160.00                                     |
| lot 1                | 26.60                                      |
| lot 8                | 26.54                                      |
| lot 9                | 26.46                                      |
| lot 16               | 26.40                                      |
| Track                |                                            |
| 51 lot 2             | 13.40                                      |

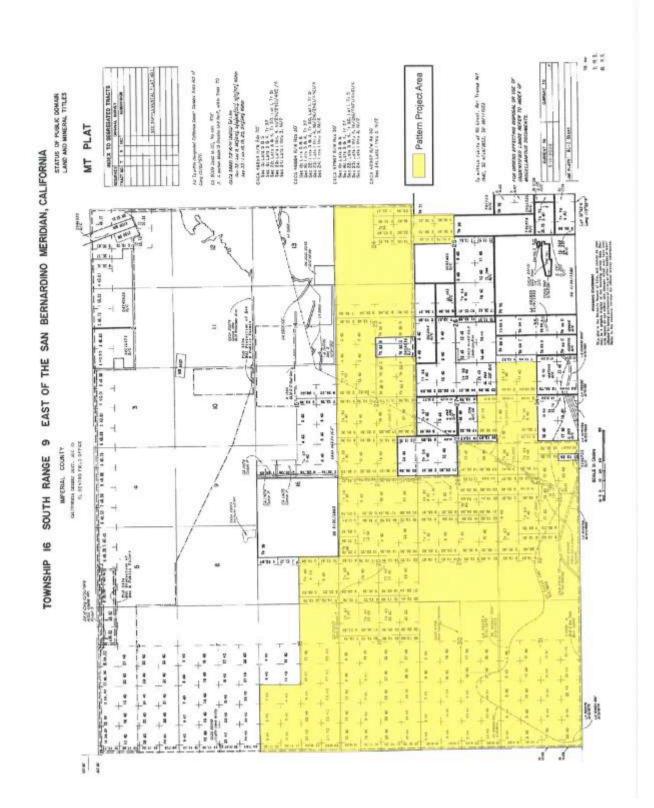
|             | lot 3      | 40.00  |
|-------------|------------|--------|
|             | lot 4      | 40.00  |
|             | lot 5      | 40.00  |
|             | lot 6      | 40.00  |
|             | lot 7      | 13.46  |
| Track       |            |        |
| 52          | А          | 40.00  |
| Track<br>52 | н          | 40.00  |
| 52          | п          | 40.00  |
|             |            | 532.86 |
|             | section 24 |        |
|             | lot 1      | 23.41  |
|             | lot 4      | 14.12  |
|             | lot 5      | 14.00  |
|             | lot 8      | 23.39  |
| Track       |            |        |
| 53          | lot 2      | 16.59  |
|             | lot 3      | 25.88  |
|             | lot 6      | 26.00  |
|             | lot 7      | 16.61  |
|             | N1/2       | 320.00 |
|             | SW1/4      | 160.00 |
|             |            | 640.00 |
|             | section 25 |        |
|             | lot 1      | 16.61  |
|             | lot 2      | 26.12  |
|             | lot 3      | 13.88  |
|             | lot 4      | 13.78  |
|             | lot 5      | 26.24  |
|             | lot 6      | 16.62  |
|             |            | 113.25 |
|             |            | 113.23 |
|             | section 27 |        |
|             | lot 20     | 26.33  |
|             | lot 21     | 40.00  |
|             | lot 22     | 13.71  |
|             |            | 80.04  |
|             | anation 20 |        |
|             | section 28 | 40     |
|             | lot 13     | 40     |
|             | lot 14     | 26.34  |
|             | lot 15     | 13.66  |
|             |            |        |

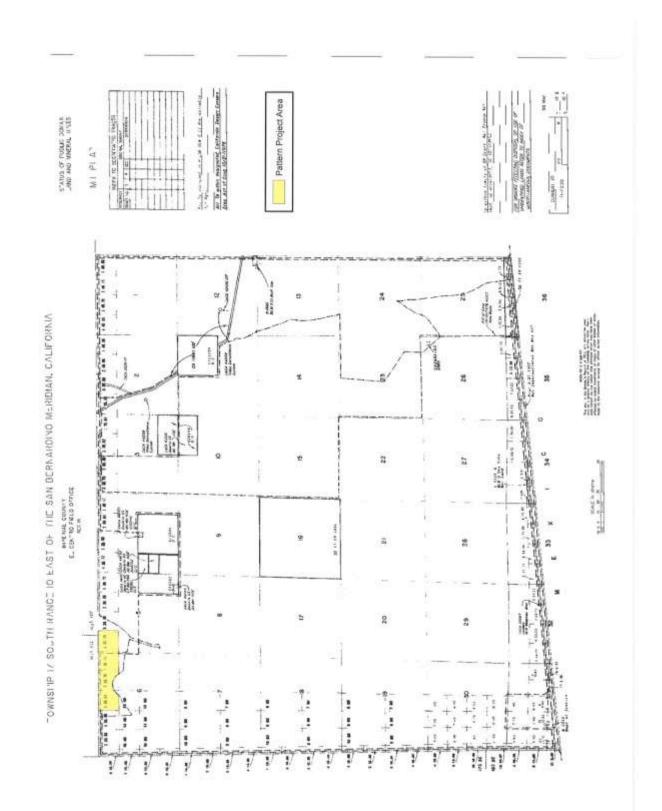
|            | lot 16     | 26.34  |
|------------|------------|--------|
|            | lot 19     | 13.66  |
|            | lot 20     | 13.65  |
|            | lot 23     | 26.35  |
|            | lot 24     | 13.65  |
|            | lot 25     | 26.35  |
|            | lot 26     | 40     |
| Track      |            | 10.00  |
| 59         | lot 3      | 13.69  |
|            | lot 4      | 40.00  |
|            | lot 5      | 26.31  |
|            | lot 8      | 26.32  |
|            | lot 9      | 40.00  |
|            | lot 10     | 13.68  |
| track 60   | lot 17     | 13.66  |
|            | lot 18     | 26.34  |
|            | lot 21     | 26.35  |
| <b>-</b> 1 | lot 22     | 13.65  |
| Track      | lat C      | 12.00  |
| 61         | lot 6      | 13.69  |
|            | lot 7      | 13.68  |
|            |            | 507.37 |
|            | section 29 |        |
|            | lot 3      | 13.67  |
|            | lot 4      | 13.67  |
|            | lot 9      | 13.65  |
|            | lot 10     | 13.65  |
|            | W1/2       | 320.00 |
| Track      |            |        |
| 61         | lot 1      | 40.00  |
|            | lot 2      | 26.33  |
|            | lot 5      | 26.33  |
|            | lot 6      | 40.00  |
|            | lot 7      | 40.00  |
|            | lot 8      | 26.35  |
|            | lot 11     | 26.35  |
|            | lot 12     | 40.00  |
|            |            | 640.00 |
|            | section 30 |        |
|            | lot 5      | 40.00  |
|            | lot 6      |        |
|            |            | 40.00  |
|            | lot 7      | 40.00  |

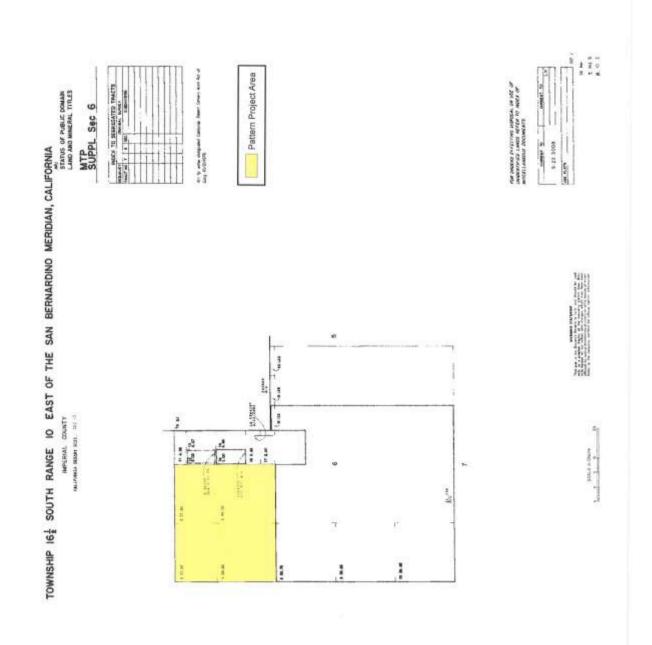
| lot 8          | 40.00   |
|----------------|---------|
| lot 9          | 40.00   |
| lot 10         | 16.32   |
| lot 11         | 15.87   |
| lot 12         | 40.00   |
| lot 13         | 40.00   |
| lot 14         | 40.00   |
| lot 15         | 40.00   |
| lot 16         | 40.00   |
| lot 17         | 40.00   |
| lot 18         | 40.00   |
| lot 19         | 40.00   |
| lot 20         | 40.00   |
| lot 21         | 40.00   |
| lot 22         | 15.43   |
| lot 23         | 15.00   |
| lot 24         | 40.00   |
| lot 25         | 40.00   |
| lot 26         | 40.00   |
| lot 27         | 40.00   |
| lot 28         | 40.00   |
| NE1/4          | 160.00  |
| SE1/4          | 160.00  |
|                | 1182.62 |
| contion 21     |         |
| section 31     | 40.00   |
| lot 1<br>lot 2 | 40.00   |
| lot 3          | 40.00   |
| lot 4          | 40.00   |
| lot 5          | 40.00   |
| lot 6          | 14.92   |
| lot 7          | 14.87   |
| lot 8          | 40.00   |
| lot 9          | 40.00   |
| lot 10         | 40.00   |
| lot 11         | 40.00   |
| lot 12         | 40.00   |
| lot 13         | 40.00   |
| lot 14         | 40.00   |
| lot 15         | 40.00   |
| lot 16         | 40.00   |
| lot 17         | 40.00   |
|                |         |

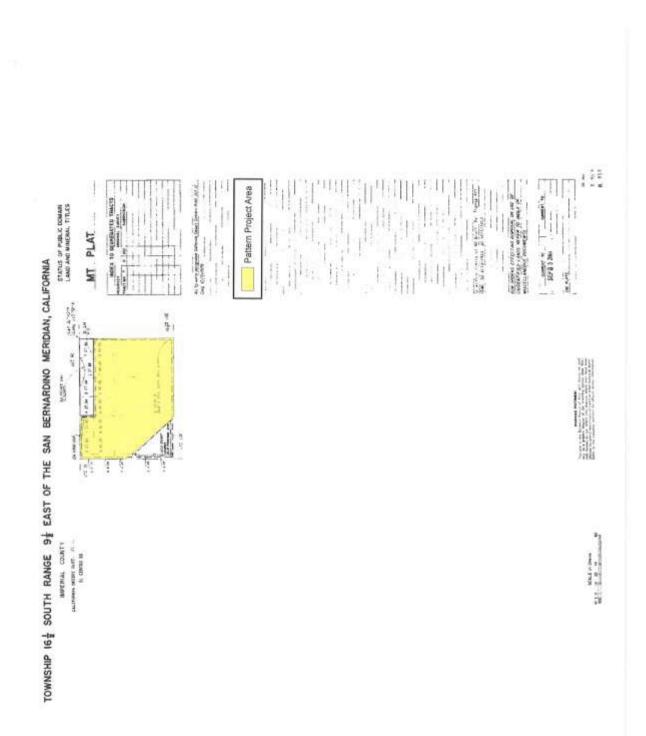
|       | lot 18     | 15.03        |
|-------|------------|--------------|
|       | lot 19     | 15.08        |
|       | lot 20     | 40.00        |
|       | lot 21     | 40.00        |
|       | lot 22     | 40.00        |
|       | lot 23     | 40.00        |
|       | lot 24     | 40.00        |
|       | E1/2E1/2   | 320.00       |
|       |            | 1179.90      |
|       | section 32 |              |
|       | lot 3      | 13.57        |
|       | lot 4      | 13.51        |
|       | lot 9      | 13.28        |
| Track |            | 13.20        |
| 62    | lot 1      | 40.00        |
|       | lot 2      | 26.43        |
|       | lot 5      | 26.49        |
|       | lot 6      | 13.42        |
| Track |            |              |
| 63    | lot 7      | 26.58        |
|       | lot 8      | 26.72        |
|       | W1/2       | 320.00       |
|       | S1/2SE1/4  | 80.00        |
|       | NW1/4SE1/4 | <u>40.00</u> |
|       |            | 640.00       |
|       | section 33 |              |
|       | lot 3      | 13.57        |
|       | lot 4      | 26.43        |
|       | lot 5      | 13.57        |
|       | lot 6      | 40.00        |
|       | lot 9      | 26.58        |
|       | lot 10     | 13.42        |
|       | lot 13     | 26.72        |
|       | lot 18     | 13.13        |
|       | lot 22     | 26.87        |
| Track |            | 10.00        |
| 63    | lot 7      | 40.00        |
|       | lot 8      | 13.42        |
|       | lot 14     | 13.28        |
|       | lot 15     | 40.00        |
|       | lot 16     | 40.00        |
|       | lot 17     | 40.00        |
|       | lot 19     | 26.87        |

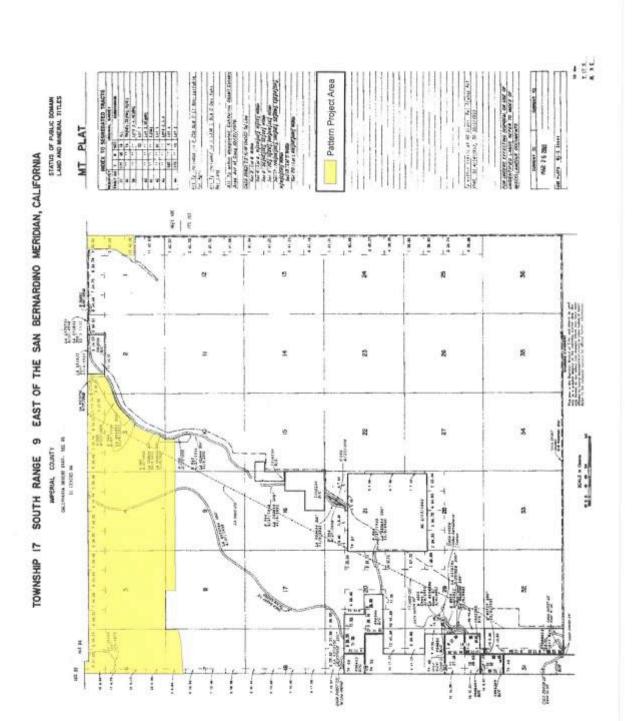
|       | lot 20     | 40.00  |
|-------|------------|--------|
| Track |            |        |
| 64    | lot 11     | 26.58  |
|       | lot 12     | 40.00  |
| Track |            |        |
| 65    | lot 1      | 40.00  |
|       | lot 2      | 26.43  |
|       | SW1/4SW1/4 | 40.00  |
|       |            | 626.87 |
|       |            |        |
|       | section 34 |        |
|       | lot 3      | 13.62  |
|       | lot 4      | 40.00  |
|       | lot 5      | 40.00  |
|       | lot 6      | 13.55  |
| Track |            |        |
| 66    | lot 7      | 26.45  |
|       | lot 8      | 40.00  |
|       | lot 9      | 13.46  |
| Track |            |        |
| 67    | lot 1      | 40.00  |
|       | lot 2      | 26.38  |
|       | lot 10     | 26.54  |
|       | lot 11     | 40.00  |
|       |            | 320.00 |
|       |            |        |

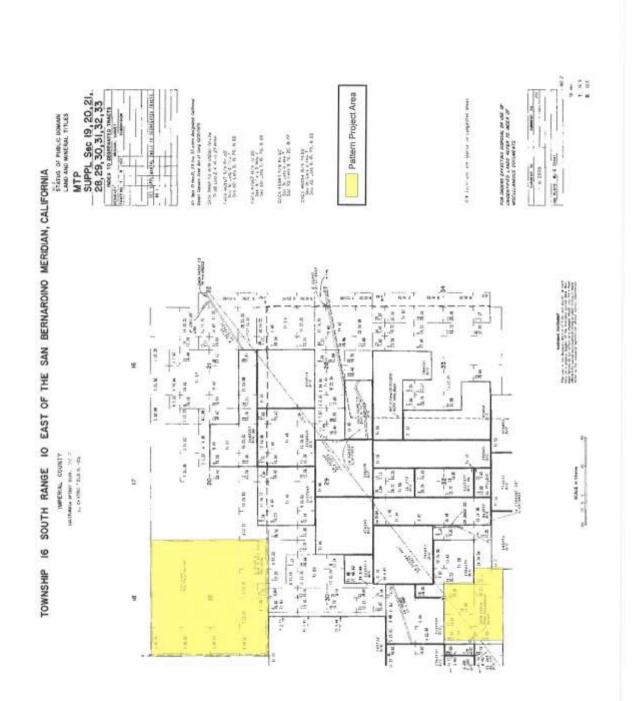

| Township 16 South | Range 10 East |
|-------------------|---------------|
| section 19        |               |
| lot 3             | 40.04         |
| lot 4             | 40.03         |
| lot 5             | 40.03         |
| lot 6             | 40.02         |
| lot 7             | 32.62         |
| lot 8             | 7.39          |
| lot 9             | 32.30         |
| lot 10            | 7.70          |
| NE1/4             | 160.00        |
| E1/2NW1/4         | 80.00         |
| NE1/4SW1/4        | 40.00         |
| N1/2SE1/4         | 80.00         |
| SE1/4SE1/4 40.0   |               |
|                   | 640.13        |


|       | section 31                 |              |                        |
|-------|----------------------------|--------------|------------------------|
|       | lot 15                     | 19.3         |                        |
|       | lot 16                     | 21.8         |                        |
|       | lot 21                     | 22.85        |                        |
|       | lot 22                     | 26.72        |                        |
|       | lot 23                     | 12.77        |                        |
| Track |                            |              |                        |
| 64    | lot 17                     | 18.2         |                        |
|       | lot 18                     | 22.9         |                        |
|       | SW1/4SW1/4                 | 40           |                        |
|       |                            | 184.54       |                        |
|       | Township 17 South          | Range 9 East |                        |
|       | section 1                  |              |                        |
|       | lot 5                      | 23.27        | to wilderness boundary |
|       | lot 9                      | 30.81        | to wilderness boundary |
|       | lot 10                     | 18.48        | to wilderness boundary |
|       |                            | 72.56        |                        |
|       | section 2                  |              |                        |
|       | lot 8                      | 31.79        | South and North of I-8 |
|       | N1/2SW1/4NW1/4             | 9.06         | North of I-8           |
|       |                            | 40.85        |                        |
|       | section 3                  |              |                        |
|       | lot 5                      | 34.50        |                        |
|       | lot 6                      | 34.62        |                        |
|       | lot 7                      | 34.74        |                        |
|       | lot 8                      | 34.86        |                        |
|       | S1/2N1/2, SW1/4, N1/2SE1/4 | 337.46       | North of I-8           |
|       |                            | 476.18       |                        |
|       | section 4                  |              |                        |
|       | lot 5                      | 34.86        |                        |
|       | lot 6                      | 34.74        |                        |
|       | lot 7                      | 34.62        |                        |
|       | lot 8                      | 34.50        |                        |
|       | S1/2N1/2                   | 160.00       |                        |
|       | S1/2                       | 320.00       |                        |
|       |                            | 618.72       |                        |
|       | section 5                  |              |                        |
|       | lot 5                      | 34.43        |                        |
|       | lot 6                      | 34.40        |                        |


| lot 7                | 34.38      |                            |
|----------------------|------------|----------------------------|
| lot 8                | 34.35      |                            |
| S1/2N1/2             | 160.00     |                            |
| S/12                 | 320.00     |                            |
|                      | 617.56     | -                          |
| section 6            |            |                            |
| lot 8                | 34.25      |                            |
| lot 9                | 37.49      |                            |
| lot 10               | 8.84       |                            |
| lot 11               | 8.73       |                            |
| lot 12               | 9.13       |                            |
| lot 13               | 9.54       |                            |
| S1/2NW1/4            | 80.00      |                            |
| SE1/4                | 160.00     |                            |
| - /                  | 347.98     |                            |
| section 7            |            |                            |
|                      |            | to big horn sheep critical |
| lot 5                | 9.94       | habitat                    |
|                      |            | to big horn sheep critical |
| N1/2N1/2NE1/4        | 40.00      | habitat                    |
|                      | 49.94      |                            |
| section 8            |            |                            |
| N1/2N1/2NE1/4        | 40.00      |                            |
|                      | 40.00      | -                          |
|                      | 40.00      |                            |
| section 9            |            |                            |
| N1/2N1/2N1/2         | 80.00      | -                          |
|                      | 80.00      |                            |
| section 10           |            |                            |
| N1/2N1/2NW1/4        | 40.00      | West of I-8                |
|                      | 40.00      |                            |
|                      | Range 91/2 |                            |
| Township 161/2 South | East       |                            |
| section 1            |            |                            |
| lot 5                | 40.00      |                            |
| lot 6                | 40.00      |                            |
| lot 7                | 40.00      |                            |
| lot 8                | 40.00      |                            |
|                      |            |                            |


| S1/2N1/2              | 160.00        |                                    |
|-----------------------|---------------|------------------------------------|
| S1/2                  | 320.00        |                                    |
|                       | 640.00        |                                    |
|                       |               |                                    |
| section 2             |               |                                    |
| lot 1                 | 27.90         |                                    |
| lot 2                 | 27.83         |                                    |
| lot 3                 | 2.77          |                                    |
| lot 4                 | 4.00          |                                    |
| lot 5                 | 40.00         |                                    |
| lot 6                 | 40.00         |                                    |
|                       |               | East of the Wilderness             |
| lot 7                 | 2.70          | Boundary                           |
| S1/2NE1/4, SE1/4      | 124.06        | East of the Wilderness<br>Boundary |
|                       | 269.26        | ,                                  |
|                       |               |                                    |
| Township 16 1/2 South | Range 10 East |                                    |
| section 6             |               |                                    |
| lot 2                 | 27.90         |                                    |
| lot 3                 | 27.63         |                                    |
| lot 4                 | 39.66         |                                    |
| lot 5                 | 40.00         |                                    |
|                       | 135.19        |                                    |
|                       |               |                                    |
| Township 17 South     | Range 10 East |                                    |
| section 5             |               |                                    |
| lot 4                 | 39.78         |                                    |
|                       | 39.78         |                                    |
| section 6             |               |                                    |
|                       |               | North of the Wilderness            |
| lot 1                 | 39.73         | Boundary                           |
|                       |               | North of the Wilderness            |
| lot 2                 | 31.55         | Boundary                           |
|                       |               | North of the Wilderness            |
| lot 3                 | 36.56         | Boundary                           |
|                       | 107.84        |                                    |
|                       |               |                                    |


## **APPENDIX B PLAT MAPS**














|          |      |                    |                  | Re            | esourd    | ce Imp     | oact P           | otenti                   | al (3 :         | = Hig                   | h, 2 =               | Mode   | erate,              | 1 = L | ow; 0     | = No      | ne/Ne       | gligib       | e)                     |                                    |                          |      |       |                             |
|----------|------|--------------------|------------------|---------------|-----------|------------|------------------|--------------------------|-----------------|-------------------------|----------------------|--------|---------------------|-------|-----------|-----------|-------------|--------------|------------------------|------------------------------------|--------------------------|------|-------|-----------------------------|
| Turbine# | ACEC | Cultural Resources | EJ / NA Concerns | Noxious weeds | Rangeland | Recreation | Social Economics | Prime & Unique Farmlands | Watershed-Soils | Watershed-Surface Water | Watershed-Vegetation | Visual | Wetlands / Riparian | Elk   | Mule Deer | Pronghorn | Sage Grouse | Pygmy Rabbit | Special Status Species | Birds (inc. migratory) non-raptors | Raptors (inc. migratory) | Bats | Total | Any High Potential Impacts? |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|          |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |

## APPENDIX B. POTENTIAL IMPACTS BY TURBINE LOCATION

|           |      | -                  |                  | Re            | esouro    | ce Imp     | oact P           | otenti                   | al (3           | = Hig                   | h, 2 =               | Mode   | erate,              | 1 = L | ow; 0     | = Nor     | ne/Ne       | gligib       | e)                     | -                                  | -                        |      |       |                             |
|-----------|------|--------------------|------------------|---------------|-----------|------------|------------------|--------------------------|-----------------|-------------------------|----------------------|--------|---------------------|-------|-----------|-----------|-------------|--------------|------------------------|------------------------------------|--------------------------|------|-------|-----------------------------|
| Turbine # | ACEC | Cultural Resources | EJ / NA Concerns | Noxious weeds | Rangeland | Recreation | Social Economics | Prime & Unique Farmlands | Watershed-Soils | Watershed-Surface Water | Watershed-Vegetation | Visual | Wetlands / Riparian | Elk   | Mule Deer | Pronghorn | Sage Grouse | Pygmy Rabbit | Special Status Species | Birds (inc. migratory) non-raptors | Raptors (inc. migratory) | Bats | Total | Any High Potential Impacts? |
|           |      |                    |                  |               |           |            | •1               |                          |                 |                         |                      |        |                     |       |           |           | •1          |              | •1                     |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |

|           |      | -                  |                  | Re            | esouro    | ce Imp     | oact P           | otenti                   | al (3           | = Hig                   | h, 2 =               | Mode   | erate,              | 1 = L( | ow; 0     | = Noi     | ne/Ne       | gligib       | e)                     |                                    | -                        |      |       |                             |
|-----------|------|--------------------|------------------|---------------|-----------|------------|------------------|--------------------------|-----------------|-------------------------|----------------------|--------|---------------------|--------|-----------|-----------|-------------|--------------|------------------------|------------------------------------|--------------------------|------|-------|-----------------------------|
| Turbine # | ACEC | Cultural Resources | EJ / NA Concerns | Noxious weeds | Rangeland | Recreation | Social Economics | Prime & Unique Farmlands | Watershed-Soils | Watershed-Surface Water | Watershed-Vegetation | Visual | Wetlands / Riparian | Elk    | Mule Deer | Pronghorn | Sage Grouse | Pygmy Rabbit | Special Status Species | Birds (inc. migratory) non-raptors | Raptors (inc. migratory) | Bats | Total | Any High Potential Impacts? |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           | 1    |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |        |           |           |             |              |                        |                                    |                          |      |       |                             |

|           |      | -                  |                  | Re            | esouro    | ce Imp     | oact P           | otenti                   | al (3           | = Hig                   | h, 2 =               | Mode   | erate,              | 1 = L | ow; 0     | = Nor     | ne/Ne       | gligib       | le)                    | -                                  | -                        |      |       |                             |
|-----------|------|--------------------|------------------|---------------|-----------|------------|------------------|--------------------------|-----------------|-------------------------|----------------------|--------|---------------------|-------|-----------|-----------|-------------|--------------|------------------------|------------------------------------|--------------------------|------|-------|-----------------------------|
| Turbine # | ACEC | Cultural Resources | EJ / NA Concerns | Noxious weeds | Rangeland | Recreation | Social Economics | Prime & Unique Farmlands | Watershed-Soils | Watershed-Surface Water | Watershed-Vegetation | Visual | Wetlands / Riparian | Elk   | Mule Deer | Pronghorn | Sage Grouse | Pygmy Rabbit | Special Status Species | Birds (inc. migratory) non-raptors | Raptors (inc. migratory) | Bats | Total | Any High Potential Impacts? |
|           |      |                    |                  | Į             |           |            | •1               |                          | -               |                         |                      |        |                     |       | Ι         |           | •1          |              | •1                     |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |
|           |      |                    |                  |               |           |            |                  |                          |                 |                         |                      |        |                     |       |           |           |             |              |                        |                                    |                          |      |       |                             |

| Impact Rationale: |
|-------------------|
|-------------------|

| inipact nationale.         |                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACEC                       | Turbine placement would not directly impact ACEC's because they're all outside of the designated areas,<br>although the potential exists for visual impacts to resources within the ACEC, such as the Yuha Geoglyphs and<br>the Juan Batista de Anza National Historic Trail.                                                                                                         |
| Cultural                   | No turbines are within potentially eligible sites, which would have been a potentially high impact; Turbines directly impacting ineligible sites would be a potentially moderate impact; Turbines within about 1/4 mile of a potentially eligible sites would be a potentially low impact; otherwise, impacts would be negligible [to be discussed with El Centro Field Office staff] |
| EJ/ NA Concerns            | No impacts expected from turbine location because all out of Sacred Area, although the potential exists for visual impacts to sacred sites outside the footprints of the turbines.                                                                                                                                                                                                    |
| Noxious Weeds              | All turbines would have equal potential to spread weeds.                                                                                                                                                                                                                                                                                                                              |
| Rangeland                  | All turbines would have equal impact to range, except those within the treatment area. Overall reduction in range in low.                                                                                                                                                                                                                                                             |
| Recreation                 | All impacts are expected to be negligible.                                                                                                                                                                                                                                                                                                                                            |
| Social Economics           | All impacts are expected to be negligible or beneficial.                                                                                                                                                                                                                                                                                                                              |
| Prime and Unique Farmlands | If within DLE, impacts would be low due to those areas having potential to become prime farmland. Removal of land is small and it's not currently being used or ready to be used (i.e. needs irrigation and salts removed).                                                                                                                                                           |
| Watershed - Soils          | Moderate impacts if in areas with moderate erosion potential, low if in soils with low erosion potential, etc.                                                                                                                                                                                                                                                                        |
| Watershed - Surface water  | Moderate if in an ephemeral stream or wash; low if outside of those areas.                                                                                                                                                                                                                                                                                                            |
| Watershed - Vegetation     | All impacts to vegetation are expected to be low relative to what's existing.                                                                                                                                                                                                                                                                                                         |
| Visual                     | All turbines would contribute to a moderate impact.                                                                                                                                                                                                                                                                                                                                   |
| Wetlands/Riparian          | No impact unless in or directly adjacent to a wetland.                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                       |

| Special Status Species                 | No impact for most; low impact if near the preferred habitat. Will base impact analysis on impacts to individuals as there are requirements for take permitting and thresholds for consultation. |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Birds (inc. migratory) non-<br>raptors | All impacts are expected to be low unless near a water source. Survey data will be used to show whether densities and species richness of migratory birds is high or low.                        |

| Raptors (inc. migratory) | All impacts are expected to be low unless within 1/2 mile of an active nest. Survey data will be used to determine raptor nest sites and whether this is a significant area for raptor wintering or migration. |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bats                     | All impacts are expected to be moderate. Survey results will be used to analyze proximity to roosting sites and sources of open water.                                                                         |